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This position paper explores the 2015 SDSU HDMA workshop’s research question, “What type of 

innovative research frameworks can help us to collect, analyze, visualize and predict hyperlocal human 
dynamics and social media?” Metzgar et al. (2011) maintain, “The term ‘hyperlocal’ brings to mind images 
of engaged citizens storming town halls seeking better governance and better reporting thereof” (p. 773). 
In fact, they define, “Hyperlocal media operations are geographically-based, community-oriented, original-
news-reporting organizations indigenous to the web and intended to fill perceived gaps in coverage of an 
issue or region and to promote civic engagement” (p. 774). Kurpius et al. (2010) further state, “hyperlocal 
media operate at the crossroads of highly focused, locally-oriented news with technology-enabled 
potential as tools for civic engagement” (p. 360). In order for large-scale hyperlocal human activities to 
take place, Shirky (2009) suggests that members of a community need to know that everyone else in the 
community knows that everyone knows a community activity/effort is going to take place. In other words, 
information diffusion on social media is key to hyperlocal human dynamics. While the diffusion of 
innovations theory (Rogers, 2003) has tended to focus on the use of opinion leaders (OLs) with weak ties 
to disseminate new information, social network analysis literature documents that “stronger bonding ties 
may facilitate collective action” (Diani, 2011, p. 226), as in the case of the historical protest at 
Greensboro, NC, by four freshmen at North Carolina A. & T., a black college a short distance away 
(Gladwell, 2010). Therefore, this paper explores how geographically/locally based social groups and their 
social media connections can be tapped to diffuse and disseminate community oriented information, for 
public health interventions, political activism, environmental causes, etc. The focus is to model socially 
bonded groups with strong ties as mechanism for information diffusion and hyperlocal human dynamics.  

In this paper, the simplicial model of social aggregation (SMSA) (Kee, Sparks, Struppa, 
Mannucci, & Damiano, in press; Kee, Sparks, Struppa, & Mannucci, 2013; Sparks, Kee, & Struppa, 2014) 
is introduced as a framework and approach for modeling bonded groups with ‘shortened’ social distance 
on social media. Based on the mathematical theory of simplicial complexes (see Faridi, 2002; Munkres, 
1984), Kee et al. (2013) present a computational approach to modeling socially bonded groups with 
geometric spatial elements (mathematically called ‘simplexes,’ such as the full shaded triangles in Figure 
1 in Appendix A) and a social aggregation a collection of simplexes and nodes (mathematically called a 
‘simplicial complex,’ such as the entire network with nodes, linkages, and shaded triangles in Figure 1). In 
mathematical language, the faces of a 1-simplex are its two end points, the faces of a 2-simplex (a 
triangle) are its three edges, the faces of a 3-simplex (a pyramid) are its four faces (each of which is a 
triangle), and so on and so forth. Therefore, the face of an n-simplex is always an (n-1)-simplex. If a face 
is such that there is no other simplex in the complex containing it, it is called a maximal face or a facet. In 
Kee et al. (in press), the model further introduces the concept of a cover, S, of a simplicial complex as a 
set of nodes (or vertices) such that every maximal face in the complex contains at least one vertex of S. 
In other words, a cover is a set of individuals who encompass the complex in the following sense: every 
higher-dimensional group (i.e., a simplex), be it graphically an edge, a triangle, or a higher-dimensional 
face, contains at least one such vertex (or simplicial diffusers, SDs). A cover S is called minimal if no 
subset of S is also a cover. SDs are gatekeepers to their groups. Instead of traditional OLs with weak ties, 
the SMSA framework proposes to focus on SDs with strong ties as seeds for information diffusion. 

Given the definitions of these terms, this position paper introduces the specific calculations of the 
information diffusion index (IDI) of individuals (such as OLs, SDs, and any nodes) in a social network. In 
Figure 1, the social aggregation (or simplicial complex) connected to D2 shows all the pairwise 
connections and higher-dimensional groups (i.e., the shaded triangles) in the social network. Consider the 
simplicial complex whose nodes are D2, x, y, and α, β, γ, δ, ε, θ. The reason Latin letters are used for 
some vertices and Greek letters for others will be evident shortly. For now, it will suffice to say that the 
vertices x, y are ‘terminal’ vertices, in the sense that they do not connect with any other vertex in the two 
simplexes (i.e., full triangles) but D2, while this is not the case for the vertices with Greek letters. 

From the classical network analysis point of view, D2 is the OL (Valente & Pumpuang, 2007) 
because it has the highest degree centrality. However, the goal is to calculate the IDI of D2 and compare 
it with the IDI of the pair {α, β} (i.e., mathematically a minimal cover, what this paper proposes to target for 
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hyperlocal human dynamics and information diffusion on social media). In order to follow the calculations 
below, we will assign IDI’s of 1 to any direct link (such as D2-x, one degree separation), 0.5 to any double-
link (such as D2-θ-α, two degree separation), 1.4 (to approximate √2) to any simplicial link (such as α-β, 
because α and β belong to a socially bonded group represented by the full shaded triangle), 0.7 for 
simplicial double-link (such as α-β-γ), and 0.6 to a mixed double-link (such as D2-α-β). The existence of a 
two-dimensional simplex (as in the triangle connecting α, β, and γ) shortens, so to speak, the distances 
between vertices, and increases the IDI’s.  
 According to the SMSA framework, the IDI along a path of social distance d is (1/2)

(d-1)
, and that 

an n-dimensional simplex has vertices whose social distance is 1/n (see Kee, et al., in press, for 
mathematical explanation). The IDI along a double-link is 0.5. However, along a simplicial double-link 
(such as α-β-γ), the distance from α to β is 0.5 because they belong to a full triangle (i.e., a simplex or a 
higher-dimensional group). The IDI of α on β is then (1/2)

(0.5-1)
 = (1/2)

(-0.50)
 = 1.4. Furthermore, the path α-

β-γ is a simplicial double-link. Therefore, the IDI that α has on γ is 0.7, half of the direct flow from α to β. 
Since the mixed-second order links are in between a regular double-link and a simplicial double-link, the 
value is approximated to be the average between the two, which is 0.6. Furthermore, in keeping with a 
reasonable assumption by Christakis and Fowler’s (2009), the calculation will consider up to second-
order connections (i.e., double links; information diffusion from a node to his friend’s friend). Therefore, for 
example, from the vertex D2 we can reach δ and then β, but we will not consider further information 
diffusion that can be achieved by going from D2 to δ, to β, to ε. With these two caveats in mind, the IDI’s 
are 12.8 for α, 15.9 for β, 16.2 for D2, and 28.7 for {α, β}. One could however argue that the average IDI 
for {α, β} is less than D2 alone. Whether this is an important objection is debatable, because the set {α, β} 
still offers much better IDI than D2 alone.  

Furthermore, if we remove the vertices x and y as in Figure 2 the IDIs become 11.8 for α, 14.9 for 
β, only 14.2 for D2, and 28.7 for {α, β}. Thus, despite the fact that D2 remains the node with the largest 
degree centrality, we have now found that β alone has a higher IDI than D2. Note also that the values for 
D2 dropped by 2 (the number of terminal nodes removed), but 1 for α and β each, making β increasingly 
more powerful than D2 in a situation where there are more simplexes than terminal vertices. Another 
worthwhile point is that the difference between the two methods (to target OLs with weak ties vs. SDs 
with strong ties) becomes larger and more visible as we increase the number of higher-dimensional 
simplexes in the network. Indeed, it is exactly when vertices belong to such higher-dimensional simplexes 
that the calculation will show increased IDI. So, for example, if γ and ε were also connected, and β, γ, ε 
make up the third full triangle, the IDI of β would grow again more than the one of D2, thus making the 
simplicial method even more powerful. In this case, indeed, the IDI of D2 would not change, while the IDI 
of β would grow by another √2 or 1.4, so that even in the case of the simplex with only one terminal vertex 
the average IDI of {α, β} would end up being higher than the IDI of D2 alone. 

The simplicial model of social aggregation (SMSA) (Kee, et al., in press; Kee, et al., 2013; 
Sparks, et al., 2014) has three implications for the 2015 HDMA workshop on “Studying Big Data and 
Social media with Hyperlocal Human Dynamics and Social Networks”. First, the use of simplicial diffusing 
sets (i.e., the selected group of SDs who are gatekeepers to their groups with strong ties) to promote a 
health intervention, environmental cause, etc. takes advantage of the frequent internal communication 
patterns within socially bonded groups. Many often interact offline, as in the case of families, friends, 
roommates, work teams, etc. Furthermore, the simplicial approach can promote the positive manifestation 
of ‘peer pressure’ on members of bonded groups to attend and respond to the intervention message. 

Second, individual OLs are respected by their peers, but these leaders are not likely to be family 
members, close friends, or roommates of a lot of people in their community. The simplicial approach 
takes the same communication load to be bore by a few OLs and share it among a group of SDs. The 
results could be more rapid diffusion. In a community with 100 members, a difference of 10 more 
simplicial diffusers instead of two or three opinion leaders in support of an initiative is a major difference. 
An active dissemination program (Dearing & Kee, 2012) can be further promoted. 

Finally, Facebook or a similar social media platform can more easily be used for filtering users 
based on demographic and social indicators, such as location, gender, race, sexual orientation, etc., to 
help change agents better target specific at risk populations. Moreover, these messages are likely 
augmented by culturally embedded conversations within the target population, thus overcoming some of 
the linguistic and cultural barriers identified by Kreps and colleagues (2008). 
 
Acknowledgement: This position paper is derived from collaborative work with Lisa Sparks, Daniele Struppa, Mirco Mannucci, and Alberto Damiano.  
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