
Accelerating Agent Based Modeling for the Simulation of Information

Diffusion Using Graphics Processing Unit and Intel’s Xeon Phis

Xuan Shi, Ph.D.

Assistant Professor of GIScience, Department of Geosciences

Adjunct Faculty Member, Dept. of Computer Science and Computer Engineering

Core member, Institute for Advanced Data Analytics (IADA)

University of Arkansas (UARK), Fayetteville, AR 72701

In the process of information diffusion over social media network, each user has a probability to

propagate message to its followers. People who have great influence on others are called opinion

leaders while other people are called normal users. To demonstrate the information propagation

over a real social network, an important thing is to find best probabilities for both opinion leaders

and normal users through simulation via agent based modeling (ABM). However, this procedure

is time-consuming because the algorithm needs to try many combinations of two different

parameters to find the best parameter pair. For this reason, one goal of our team at UARK in year

3 of the IBSS project is to accelerate the ABM simulation of information diffusion using

graphics processing unit (GPU) and intel’s Xeon Phis with many-integrated cores (MICs).

The ABM simulation involves multiple steps as 1) define and generate a network (including

nodes and links); 2) detect any communities in the generated network; 3) define diffusion

parameters; 4) perform simulation and observe proceedings; and 5) visualize observed trends.

The process of defining diffusion parameters are the most time-consuming part and include

multiple steps:

1. The user specifies the number of seed nodes and the number of nodes of opinion leaders in

each community (or as percentages)

 Initially, set the number of seed nodes and select seed nodes with the specific algorithm

chosen from a list of available ones in the tool.

 Set the number of opinion leaders, or as a percentage of all nodes, inside each

community.

 In addition, select nodes from each community as opinion leaders.

 Set (and select) nodes serving as the bridge nodes between communities.

2. Users specify the probability of a meme being diffused (retweet) from an opinion leader to

all (or just a portion) of the nodes that follow the opinion leader. In addition, users need to

specify the probability of a non-opinion leader node diffusing information. In addition, users

to specify the probability of a node becomes active due to outside effects, i.e., information

from outside the network, including TV, newspaper, and so on.

3. At each simulation step, observe the following

 The percentage of the number of nodes (versus all nodes) what have seen the meme.

 The number of steps taken to reach full coverage of all nodes, 95% of all nodes, 90%,

85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25% , 20%, 15%,

10%, and 5% of all nodes.

The original ABM was encoded as serial Python scripts. The following graphics display the

sections of Python scripts that need to be parallelized for acceleration:

First of all, we tried to transform the serial Python scripts into GPU solutions. Both pyCUDA

and generic C CUDA programs were developed, for example, the corresponding C CUDA

program is displayed in the following graphics:

Unfortunately, the sequential Python program contain randomized procedures that devaluate the

functionality of GPU. A typical CUDA-capable GPU is organized into an array of highly

threaded streaming multiprocessors (SMs). Within the SM, computing threads are grouped into

block, which is then managed by a grid structure. Within a block of threads, the threads are

executed in groups of 32 called a warp. In the case of the random procedures, if different threads

in a warp need to do different things, all threads will compute a logical predicate and several

predicated instructions. This is called warp divergence. When all threads execute conditional

branches differently, the execution cost could be the sum of both branches. Warp divergence can

lead to a big loss of parallel efficiency. Thus the performance of GPU solution was even worse.

As a result, we developed four types of parallel solution using the MICs on supercomputer

Beacon. Both the native model and the offload model only utilize the Xeon Phi coprocessor,

while the host (Xeon) CPU is not efficiently used, or not used, in the ABM calculation. Two

kinds of hybrid solutions were explored to optimally utilize both the Xeon CPU and MIC

coprocessors. For example, to extend the native model, we create MPI ranks that reside on the

host CPU and the MIC coprocessors. If m MIC (Xeon Phi) coprocessors and n host CPU

processors are used, m × 60 + n MPI processes are created in the parallel implementation. In the

case of offload model, the workload is first distributed to CPUs through MPI. Then a host CPU

will offload part of the job to a MIC card using OpenMP. On the host CPU, we also use OpenMP

to spawn multiple threads for parallel processing. Asynchronous offload allows overlap of data

transfer and compute. The host initiates an offload to be performed asynchronously and can

proceed to next statement after starting this computation. In general, the hybrid-offload solution

could be more flexible and efficient. When 8 MICs were used, the hybrid-offload solution reduce

the time from 96 hours by Python serial program to 1 hour. It is expected that the time can be

further reduced to 30 minutes when 16 MICs could be used.

