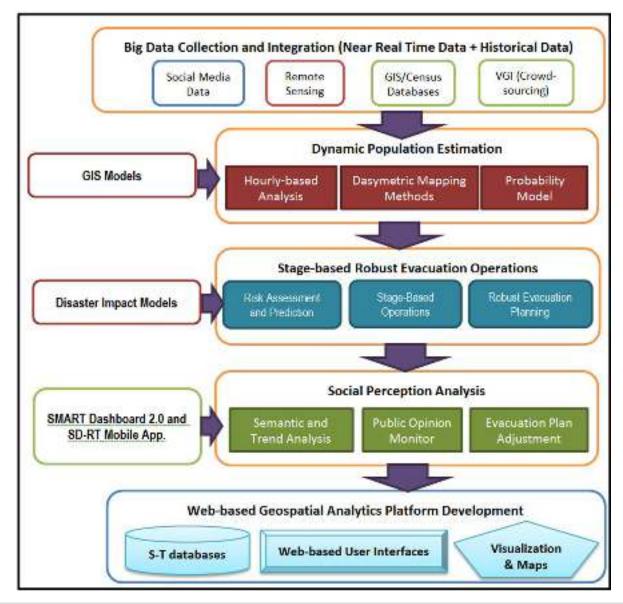


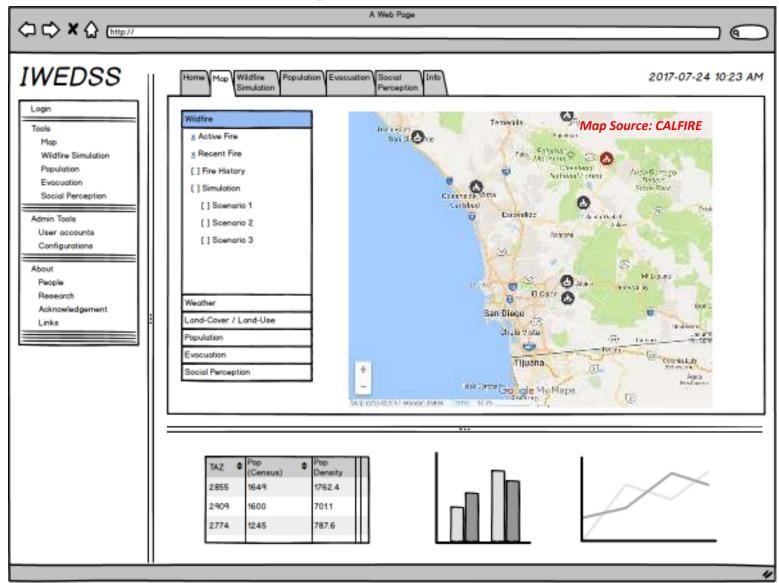
Integrated Wildfire Evacuation Decision Support System - IWEDSS Design & Focus Group Outcome -

Atsushi Nara, Ming-Hsiang Tsou, Xianfeng Yang, Sahar Ghanipoor Machiani

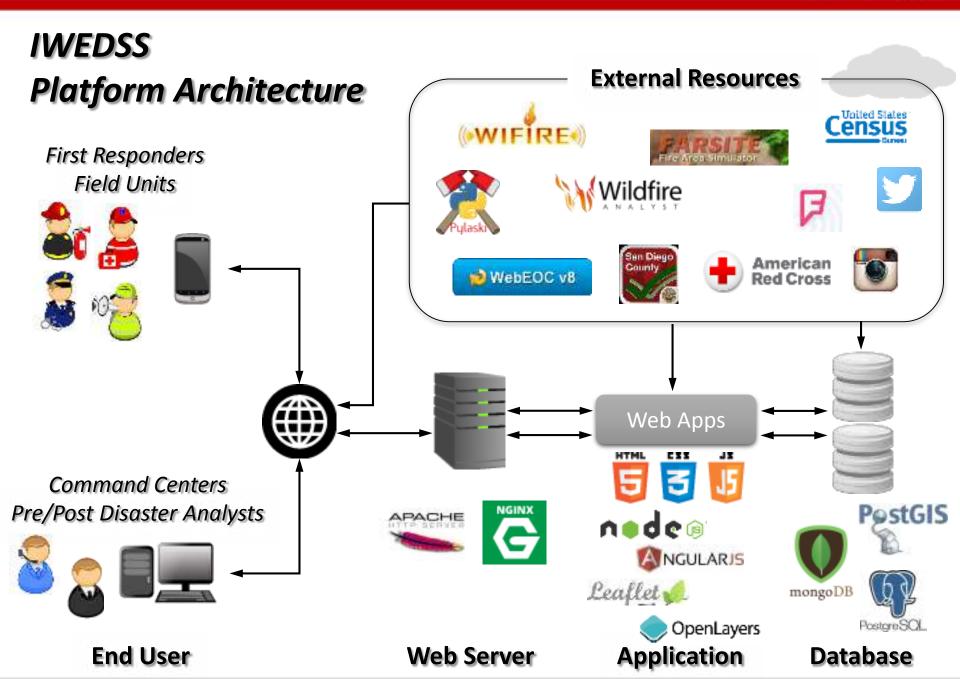
August 16, 2017



Integrated Stage-Based Evacuation with Social Perception Analysis and Dynamic Population Estimation



IWEDSS Framework



IWEDSS Web-GIS Mockup

Focus Group

Objective:

To seek opinions/suggestions from decision makers and domain experts about IWEDSS Discussed IWEDSS design, tools, interface, functionalities and/or usability

Date & Time:

July 24, 2017, 9 am – 12 pm

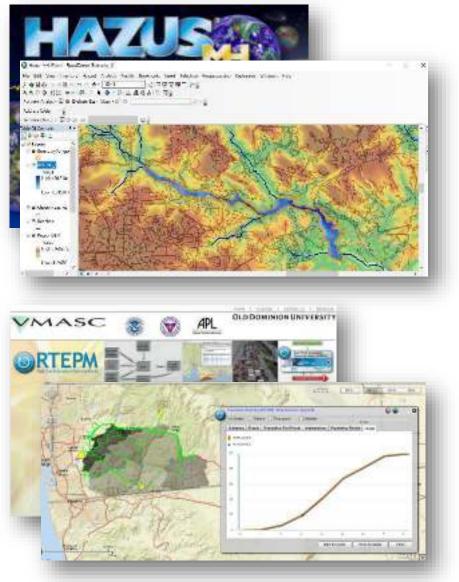
Number of Participants: Invited: 8 (+2) SDSU: 7

Invited Participants' Affiliations:

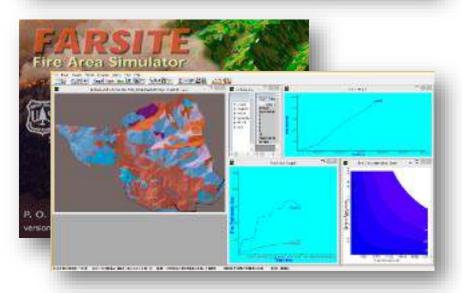
Office of Emergency Services (OES), County of San Diego; American Red Cross – San Diego; 2-1-1 San Diego; United States Forest Service (USFS); San Diego County Sheriff's Department; San Diego Gas & Electric (SDG&E) California Department of Forestry and Fire Protection (CALFIRE)

Focus Group Agenda

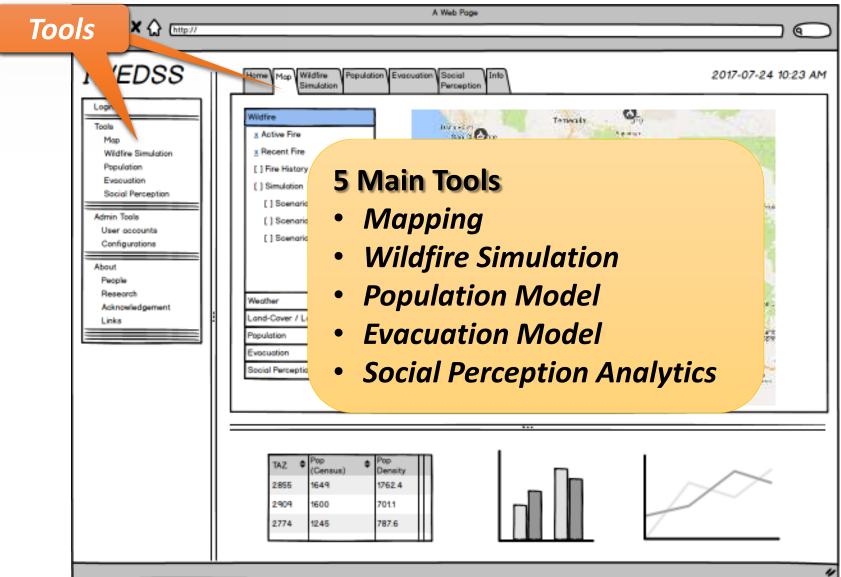
- **1.** Reviewed existing decision support software
- 2. Introduced a mock-up design of IWEDSS
- 3. Discussed existing software, tools, services, and data for wildfire management in practice
- 4. Discussed the IWEDSS design, interface, tools, functionalities and usability



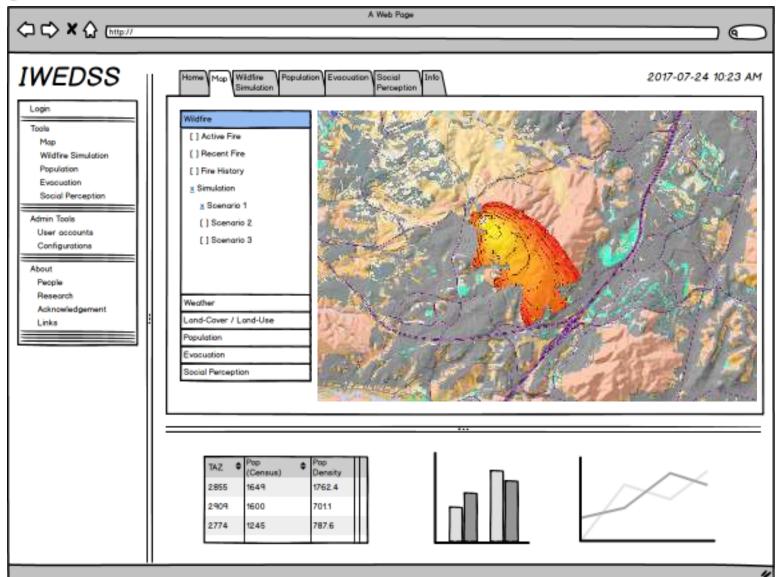
1. Reviewed existing decision support software


- Hazus-Multi-Hazard
 - FEMA
 - <u>https://www.fema.gov/hazus</u>
- FARSITE
 - USDA
 - Used in Wifire-FireMap (USCD-SDSC) for wildfire simulation
 - <u>https://www.firelab.org/project/farsite</u>
- Wildfire Analyst
 - technosylva
 - <u>http://wildfireanalyst.com/</u>
- RtePM
 - Old Dominion University
 - Real time evacuation Planning Model
 - <u>http://rtepm.vmasc.odu.edu/</u>

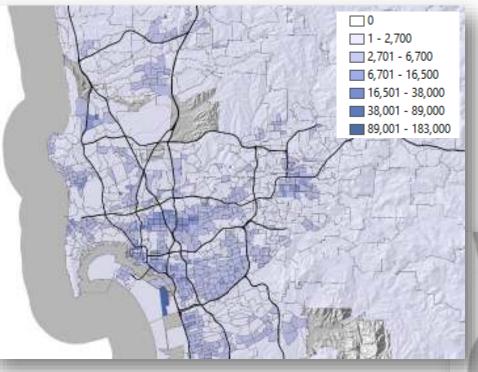
1. Reviewed existing decision support software



2. Introduced a mock-up design of IWEDSS

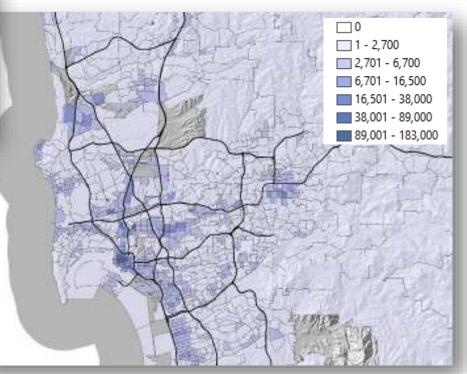


2. Introduced a mock-up design of IWEDSS


Wildfire Simulation

Integrated Stage-Based Evacuation with Social Perception Analysis and Dynamic Population Estimation

Population

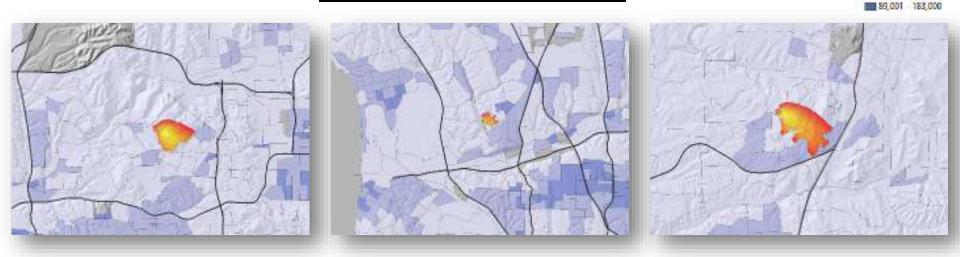

Nighttime Population Estimate

Census Survey

Daytime Population Estimate

Commuter adjusted population = Total area population + Total workers working in area - Total workers living in area

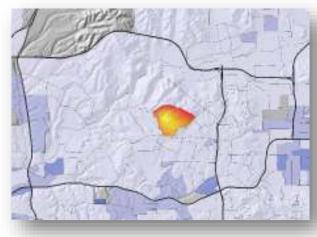
Workers' data: Census Longitudinal Employer-Household Dynamics Origin-Destination Employment Statistics (LODES)

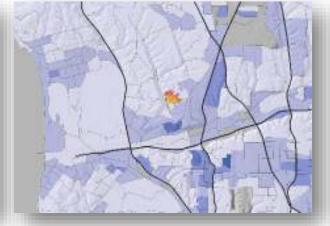

□0 □1-2,700

2,701 - 6,700 6,701 - 16,500 10,501 - 38,000

38,001 - 89,000

Population

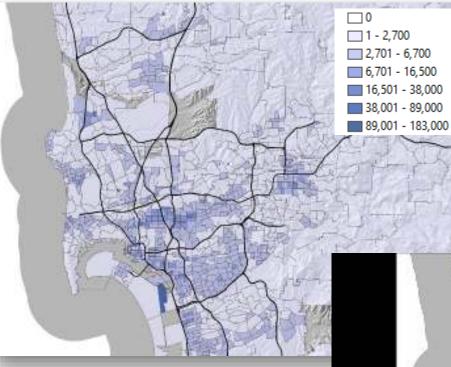

Nighttime Population Estimate



Cowles Mt.

Linda Vista

Black Mt.


Daytime Population Estimate

Integrated Stage-Based Evacuation with Social Perception Analysis and Dynamic Population Estimation

Population

Hourly Population Estimate

Modeling based on the Number of Hourly Unique Social Media Users (e.g., Twitter, Instagram)

Nighttime Population Estimate

Census Survey

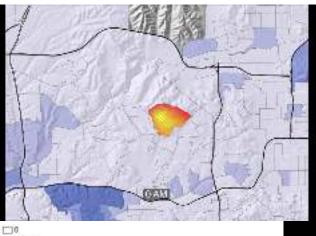
Example: Twitter Users (Weekday)

□0 □1-2,700

2,701 - 6,700 6,701 - 16,500 10,501 - 38,000

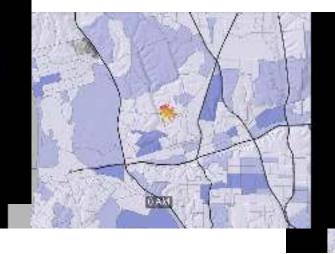
38,001 - 89,000

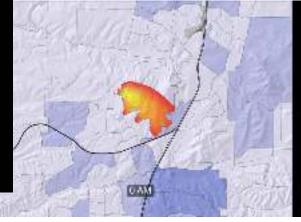
Population


Nighttime Population Estimate

Cowles Mt.

Linda Vista


Black Mt.



1 - 33

34 - 83 84 - 164 165 - 301

302 - 542 543 - 2,146

Number of Hourly Unique Twitter Users (Weekday)

Population

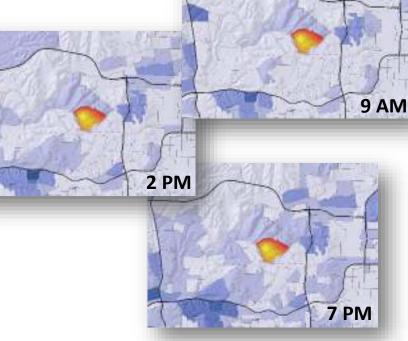
Spearman's rank correlation coefficient between the hourly unique twitter users' density [weekday or weekend] and [census nighttime population or commuter adjusted daytime population]

Time	Weekday		Weekend		
	Nighttime	Daytime	Nighttime	Daytime	
0:00-1:00	0.615 ***	0.640 ***	0.572 ***	0.604 ***	
1:00-2:00	0.564 ***	0.597 ***	0.498 ***	0.537 ***	
2:00-3:00	0.451 ***	0.496 ***	0.442 ***	0.471 ***	
3:00-4:00	0.399 ***	0.468 ***	0.311 ***	0.344 ***	
4:00-5:00	0.317 ***	0.429 ***	0.222 ***	0.294 ***	
5:00-6:00	0.453 ***	0.560 ***	0.231 ***	0.348 ***	
6:00-7:00	0.473 ***	0.601 ***	0.351 ***	0.464 ***	
7:00-8:00	0.446 ***	0.611 ***	0.462 ***	0.554 ***	
8:00-9:00	0.428 ***	0.606 ***	0.488 ***	0.595 ***	
9:00-10:00	0.427 ***	0.616 ***	0.485 ***	0.608 ***	
10:00-11:00	0.423 ***	0.619 ***	0.504 ***	0.637 ***	
11:00-12:00	0.431 ***	0.634 ***	0.470 ***	0.615 ***	
12:00-13:00	0.435 ***	0.637 ***	0.500 ***	0.643 ***	
13:00-14:00	0.450 ***	0.645 ***	0.497 ***	0.642 ***	
14:00-15:00	0.473 ***	0.661 ***	0.493 ***	0.636 ***	
15:00-16:00	0.496 ***	0.673 ***	0.488 ***	0.628 ***	
16:00-17:00	0.501 ***	0.667 ***	0.515 ***	0.651 ***	
17:00-18:00	0.529 ***	0.672 ***	0.521 ***	0.639 ***	
18:00-19:00	0.555 ***	0.684 ***	0.524 ***	0.639 ***	
19:00-20:00	0.576 ***	0.685 ***	0.551 ***	0.652 ***	
20:00-21:00	0.608 ***	0.690 ***	0.584 ***	0.659 ***	
21:00-22:00	0.619 ***	0.682 ***	0.600 ***	0.665 ***	
22:00-23:00	0.653 ***	0.695 ***	0.617 ***	0.665 ***	
23:00-24:00	0.646 ***	0.684 ***	0.602 ***	0.648 ***	
(n=1,571 TAZs) ***p<0.001					

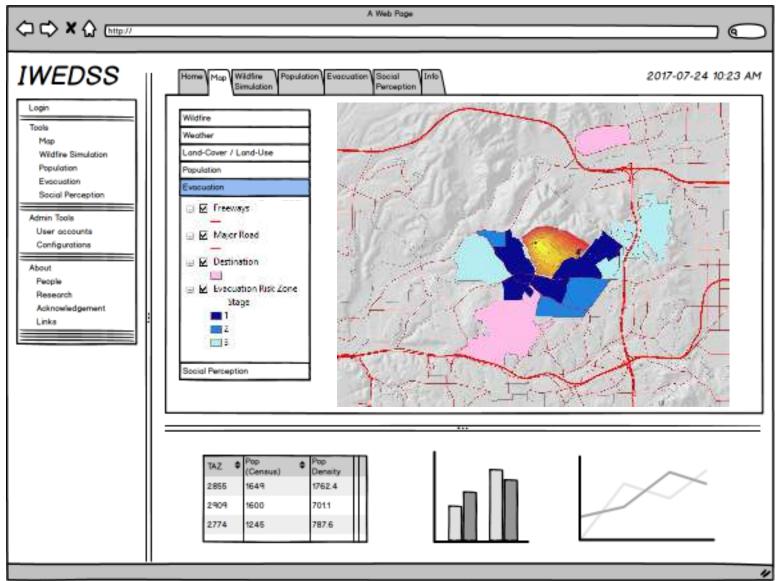
Population

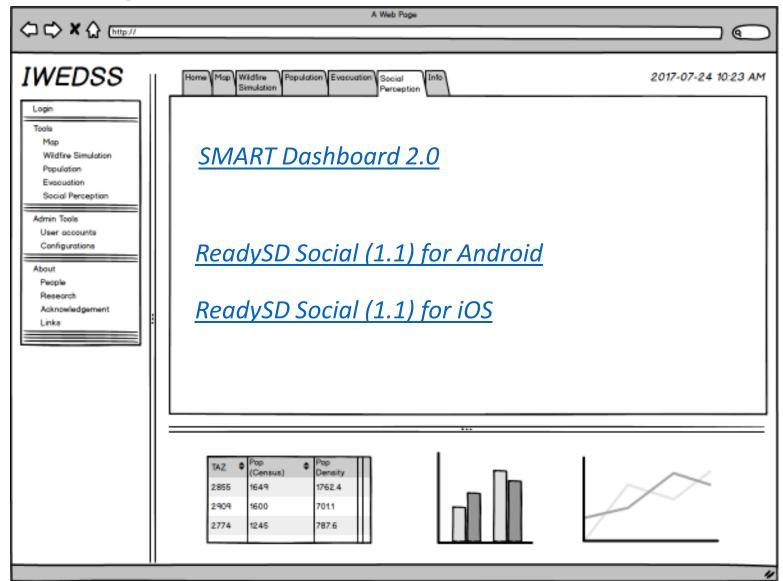

Hourly Population Estimate Model

$$\rho_{(t,s)} = D_{(t,s)}\varphi_{(t)}\phi_{(s)}$$


- $\rho_{(t,s)}$: Population density estimate in an hour (s) at a TAZ (t)
- $D_{(t,s)}$: Average density of unique social media users in t at s
- $arphi_{(t)}$: Temporal scaling factor
- $\phi_{(s)}$: Spatial scaling factor

Land-Use





Evacuation

Social Perception

3. Discussed existing software, tool, services, and data for wildfire management in practice

General Category	Name	Туре	Application Category	Provider	License	Adopted SD Agency
Tool, App, Service	Blackbird.AI	Web-based platform	Data analytics	SocialTrendly	Commercial	
	ForSight/HelioSight	Platform/API	Data analytics	Crimson Hexagon	Commercial	
	Nextdoor	Mobile app	Local social network		Free	
	GeoFeedia	Mobile app	Geotagged social media data feed			
	Hootsuite	Mobile app	Social media communication		Free	211
	Waze	Mobile app	Navigation and live traffic information			OES
	NICS	Web-based platform	Next-generation incident command system	MIT-Lincoln Lab & California First Responder Community	Open source	
	SCOUT	Web-based platform	Situation awareness and collaboration tool	Cal OES, CAL FIRE, DHS S&T	Open source*	OES
	GeoCortex App	Mobile app	Evacuation response reporting tool	OES, Sheriff's Department		
Data	National Shelter System	Web-based platform	Database	Red Cross		
management system	SanMaps	Web-based platform	Data integration via Web-GIS	County of San Diego		OES, 211, Red Cross
	WebEOC	Web-based platform	Crisis information management system	County of San Diego		OES

nson

hexadon

Beal-time Warket Research for Beal-time Marketers'

Geofeedia

American

Red Cross

*for baseline code

3. Discussed existing software, tool, services, and data for wildfire management in practice

General Category	Name	Short Description
Tool, App,	Blackbird.Al	A.I. driven anomaly detection for crisis and risk management
Service	ForSight/HelioSight	Social media analytics for business marketing (consumer references, trends, sentiment, social conversation around events, brands)
	Nextdoor	Private social network app for a local community
	GeoFeedia	Social media intelligence platform that associates social media posts with geographic locations
	Hootsuite	Share and schedule posts from Twitter, Facebook, Instagram, and LinkedIn accounts all from one app
	Waze	Navigation and live traffic app
	NICS	Communication platform for first responders
	SCOUT	Interagency situational awareness for CA emergency responders
	GeoCortex App	A quick reporting tool to record people responses for evacuation order
Data management system	National Shelter System	Over 56,000 potential shelter facilities and their information for disaster management
	SanMaps	A regional group, data library, and standardized application
	WebEOC	Provides secure real-time text-based information sharing

- General Feedback about IWEDSS
- Suggestions/Considerations
 - Interface
 - Data
 - Model/Functionality

General Feedback

- "Can provide technology supports to validate their decision making"
- "Great to have a technology component to run simulations and make recommendations not only to tactical and strategical fire decisions but route planning"
- "Useful to have social perception analytics tools available to local communities for emergency responses"
- "Has merit to the First Responder Community, and once completed will save lives"

Interface

- Have a simple interface with robust processing power behind the interface
- Who will be the end user, field units or command centers?
 - Have adaptability to service both
 - Network connectivity issue for field units
 - Small data pipe for field units compared to buildings with established networks
- Make recommendations for
 - Evacuation Warning Notice to prepare to evacuate
 - Evacuation Order you need to leave now
 - Shelter In Place stay where you are and lock down
- Multi-platform compatible. PC, Apple, Android, IPhone, etc.

<u>Data</u>

- Build or get access to a shelter database which has shelter information (e.g., locations, capacity) from both national shelter service and WebEOC (SD County)
 - Shelter locations, evacuation end points (e.g., parking lots, schools, recreational centers), pre-identified end points and shelters by sheriff's department & red cross, private shelter locations (e.g., churches)
- Have autonomous data collection capabilities
 - Using automated protocols to seeks (nearly) real-time data requirements
 - End user should not have to search for information to input
 - The system should know where to look automatically given the users location and data pipe
- Power outage map for repopulation
 - SDG&E has a 10 min. update map

Model/Functionality

- Take into account the human stress factors of response and mitigation while under duress. Whether sensory, mental, physical, etc.
- Take a deeper dive on what IWEDSS traffic models utilize as factors in slowing or increasing speed of vehicles. Consider factors like:
 - human factors such as time of day, experience (fire prone area, evacuated before)
 - demographics, metropolitan vs. rural
 - environmental conditions such as heat, smoke, visibility
 - law Enforcement response times and efficiencies in setting up routes and traffic control points
- How does the model incorporate human decisions? Who will evacuate, who will go to shelters, who will go to hotel, which shelter, etc.
- Estimate likelihood by considering demographics

Model/Functionality

- Consider traffic control for larger vehicles (e.g., bus and horse trailers)
- Wish Items
 - Awareness level matrix to provide awareness level based on the scan of social media (e.g., green, yellow, red)
 - Track where evacuees go and which shelter/end point

<u>Next Step</u>

• Implementation!

Acknowledgement

This material is based upon work supported by the **National Science Foundation under Grant No. 1634641**, IMEE project titled "Integrated Stage-Based Evacuation with Social Perception Analysis and Dynamic Population Estimation". Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

Thanks you Eva Sanchez, Nick Mesler, Mallika Guda, Hao Zhang for your great assistance.