
ACCELERATING AGENT BASED MODELING FOR THE

SIMULATION OF INFORMATION DIFFUSION USING

GRAPHICS PROCESSING UNIT AND INTEL’S XEON PHIS

Xuan Shi, Ph.D.

Assistant Professor of GIScience, Department of Geosciences

Adjunct Faculty Member, Dept. of Computer Science and Computer Engineering

Core member, Institute for Advanced Data Analytics (IADA)

University of Arkansas, Fayetteville, AR 72701

Overview

 Background

 Problems with GPU

 Hybrid solutions by MICs

 Result and conclusion

Background

 In the process of information diffusion over social media network,
each user has a probability to propagate message to its followers.

 People who have great influence on others are called opinion
leaders while other people are called normal users.

 To demonstrate the information propagation over a real social
network, an important thing is to find best probabilities for both
opinion leaders and normal users through simulation via agent
based modeling (ABM).

 However, this procedure is time-consuming because the algorithm
needs to try many combinations of two different parameters to find
the best parameter pair.

 For this reason, one goal of our team at UARK in year 3 of the IBSS
project is to accelerate the ABM simulation of information diffusion
using graphics processing unit (GPU) and intel’s Xeon Phis with many-
integrated cores (MICs).

Simulating information diffusion by ABM

 The ABM simulation involves multiple steps as

1) define and generate a network (including nodes and

links);

2) detect any communities in the generated network;

3) define diffusion parameters;

4) perform simulation and observe proceedings; and

5) visualize observed trends.

Defining diffusion parameters

1. The user specifies the number of seed nodes and the number of nodes of opinion
leaders in each community (or as percentages)

 Initially, set the number of seed nodes and select seed nodes with the specific algorithm
chosen from a list of available ones in the tool.

 Set the number of opinion leaders, or as a percentage of all nodes, inside each community.

 In addition, select nodes from each community as opinion leaders.

 Set (and select) nodes serving as the bridge nodes between communities.

2. Users specify the probability of a meme being diffused (retweet) from an opinion
leader to all (or just a portion) of the nodes that follow the opinion leader. In
addition, users need to specify the probability of a non-opinion leader node
diffusing information. In addition, users to specify the probability of a node
becomes active due to outside effects, i.e., information from outside the network,
including TV, newspaper, and so on.

3. At each simulation step, observe the following

 The percentage of the number of nodes (versus all nodes) what have seen the meme.

 The number of steps taken to reach full coverage of all nodes, 95% of all nodes, 90%,
85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25% , 20%,
15%, 10%, and 5% of all nodes.

Implementation by Python (1)

Parallel function

for i in range(lenParameterPair):

valueMatrix[i] = Diffusion(Nodes, seedNodes, opinionLeader,
parametersList[i][0], parametersList[i][1])

def Diffusion(Nodes, seedNodes, opinionLeader, p_op_leader, p_n):

activeNodes = set()

nodetoActive = set(seedNodes.copy())

while len(nodetoActive) > 0:

v = nodetoActive.pop()

activeNodes.add(v)

ActiveNeighbors(v, Nodes, nodetoActive, activeNodes,
opinionLeader, p_op_leader, p_n)

return len(activeNodes)

Implementation by Python (2)

def ActiveNeighbors(v, Nodes, nodeToActive, activeNodes,
opinionLeader, p_op_leader, p_n):

for i in range(len(lstnbrs)):

adoptedLeader = []

adoptedNormal = []

for n in Nodes[lstnbrs[i]]:

if n in activeNodes:

if n in opinionLeader:

adoptedLeader.append(n)

else:

adoptedNormal.append(n)

if random.Random().uniform(0, 1) < (len(adoptedLeader) * p_op_leader
+ len(adoptedNormal) * p_n) / (len(adoptedLeader) +
len(adoptedNormal)):

s.append(lstnbrs[i])

Corresponding CUDA solution (1)

__global__ void Socialnet(int *valueMatrix,int *NodesA, int *lenPatameterPair, int *loops, int *seedNodes, int *opinionLeader, double

*parametersList, int *lenopinionLeader)

{

int i=blockIdx.x*blockDim.x+threadIdx.x;

int j=blockIdx.y*blockDim.y+threadIdx.y;

if(i < opinionLeaderLength && j<loopsLength)

{

valueMatrix[i*loopsLength+j] = Diffusion(i, NodesA, seedNodes, opinionLeader, parametersList[i*2+0],

parametersList[i*2+1],len_opinionLeader);

}

}

__device__ int Diffusion(int index, int *NodesA, int *seeNodes, int *opinionLeader, double p_op_leader, double p_n, int len_opinionLeader)

{

int activeNodes[1200]={0};

int nodetoActive[1200]={0};

nodetoActive[0]=seeNodes[0];nodetoActive[1]=seeNodes[1];

while (lenNodetoActive) >0)

{

int v = nodetoActive[lenNodetoActive -1];

lenNodetoActive --;

activeNodes[lenActiveNodes++]=v;

ActiveNeighbors(index, NodesA,v,nodetoActive,activeNodes,opinionLeader,p_op_leader,p_n, lenNodetoActive,

lenNodetoActive, len_opinionLeader);

}

return lenNodetoActive;

}

Corresponding CUDA solution (2)

__device__ void ActiveNeighbors(int index,int *NodesA, int v, int

*nodeToActive, int *activeNodes, int

*opinionLeader,double p_op_leader,double p_n, int &lenA, int *lenN, int

len_opinionLeader)

{

int *lstnbrs=&NodesA[v*500+0];

int adoptedLeader=0;

int adoptedNormal=0;

int sInActiveNodes=0;

int count=0;

int opinionLeader_select=0;

int nodeToActive_select=0;

for(int i=1;i<lstnbrs[0]+1;i++){

count=0;

int *index=&NodesA[500*lstnbrs[i]];

for(int k=1;k<index[0]+1;k++)

for(int j=0;j<lenA;j++)

if(index[k]==activeNodes[j])

count++;

opinionLeader_select=0;

for(int m=0; m< len_opinionLeader; m++)

if(index[k]==opinionLeader[m])

opinionLeader_select=1;

if(opinionLeader_select==1)

adoptedLeader++;

else

adoptedNormal++;

if(((adoptedLeader * p_op_leader + adoptedNormal * p_n) /

(adoptedLeader + adoptedNormal)) > 0.9)

sInActiveNodes=0;

for(int mm=0;mm<lenA;mm++)

if(lstnbrs[i]==activeNodes[mm])

sInActiveNodes=1;

if(sInActiveNodes==0)

nodeToActive_select=0;

for(int mk=0;mk<lenN_d;mk++)

if(lstnbrs[i]==nodeToActive[mk])

nodeToActive_select=1;

if(nodeToActive_select ==0)

nodeToActive[lenN_d]=lstnbrs[i];

lenNodetoActive++;

adoptedLeader=0;

adoptedNormal=0;

}

}

GPU Warp divergence

 Warp divergence Threads are executed in

warps of 32, with all threads in the warp

executing the same instruction at the same

time.

 What happens if different threads in a warp

need to do different things?

Control flow

 If statement
 Threads are executed in warps

 Within a warp, the hardware is not capable of executing
if and else statements at the same time!

__global__void function();

{

....

if(condition)

{ ...

}

else

{ ...

}

}

Control flow

 How does the hardware deal with an if statement?

Result

100

360

600

1200

0

200

400

600

800

1000

1200

1400

0.9 0.8 0.7 0.6

GPU Time(minutes)

Pre-defined numbers used in the test

Deploying MICs on Supercomputer Beacon

 MIC models

 Four parallel programming models

 Performance of four models

MIC programming models

 MPI directly on MIC cores
 MPI on CPUs

 Offload to MIC by OpenMP

 In both models, Xeon CPU is not efficiently utilized

MPI + OpenMP Solution

 CPU is better to deal with an if statement than GPU.

 MPI uses distributed memory model on distributed

network.

 OpenMP uses shared memory model on multi-core

processors.

Four parallel programming models

 Native Model
 No job is dispatched on CPU (Xeon)

 Each MIC core directly hosts one single-thread MPI process. Therefore, if m MIC (Xeon
Phi) coprocessors are used, m × 60 MPI processes are created in the parallel
implementation

 N-hybrid Model
 Both CPU (Xeon) cores and MIC (Xeon Phi) cores are utilized in the calculation.

 Pure MPI applications on CPU and MIC

 Offload Model
 The MPI processes are allocated on the CPU cores, while the data and computation are

dispatched to the MIC coprocessors

 The MPI process specifies the number of threads to the MIC that uses OpenMP to handle data
and calculation.

 O-hybrid Model
 Both CPUs and MICs are utilized for data processing on Beacon.

 The workload is first distributed to CPUs through MPI. Then a host CPU will offload
part of the job to a MIC card using OpenMP.

 On the host CPU, OpenMP is used to spawn multiple threads for parallel processing.

Implementations on Four Models

 Native Model

 In this implementation, the MPI process is directly executed on each MIC core. The data is evenly
distributed among MPI processes for computation

 Each MIC emits 240 MPI processes.

 N-hybrid Model

 Both CPU (Xeon) cores and MIC (Xeon Phi) cores are utilized in the calculation.

 Each MIC emits 240 MPI processes and host CPU emits 8 MPI processes.

 Offload Model

 The MPI processes are allocated on the host CPU cores

 The MPI process specifies 240 threads to the MIC that uses OpenMP to handle data and calculation.

 O-hybrid Model

 The workload is first distributed to CPUs through MPI. Then a host CPU will offload a half job to a
MIC card using OpenMP.

 On the host CPU, 8 OpenMP is used to spawn multiple threads for rest of the workload.

Native Performance

of MICs

617

345

201

120

0

100

200

300

400

500

600

700

1 2 4 8

Time (minutes)

N-hybrid Performance

543

305

183

108

0

100

200

300

400

500

600

1 2 4 8

Time (minutes)

of MICs

Native vs N-hybrid

 MPI in N-hybrid is like running on a heterogeneous cluster. Original
load balanced codes may get imbalanced, because host and
coprocessor computation performance are different .

Native model N-hybrid model

Offload Performance

753

382

203

113

0

100

200

300

400

500

600

700

800

1 2 4 8

Time (minutes)

of MICs

O-hybrid Coding

O-hybrid Coding Example

//Allocate memory on MIC and transfer a half of data to MIC

#pragma offload target(mic:0) in(p: length(Psize/ 2)) signal(p)

{

#pragma omp for schedule(dynamic) num_threads(240)

for(i=0;i< Psize/ 2; i++)

MICcalculation(p[i]) //MIC does a computation using p

}

#pragma omp for schedule(dynamic) num_threads(4)

for(k= Psize/ 2;k< Psize; k++)

HOSTcalculation(p[k]); // Host CPU does a computation using p

#pragma offload_wait target(mic:0) wait(p) // Do the offload only after

both MICcalculation() and HOSTcalculation() complete.

 In this programming model, we

can decide how much data is

going to be calculated in MIC or

Host CPU.

 Dynamic scheduling works on a

"first come, first served" basis.

 Both MICcalculation and

HOSTcalculation are running

simultaneously.

 An offload wait pragma is used

to wait for completion of the

MICcalculation() and

HOSTcalculation() activitities.

O-hybrid Performance

360

200

125

60

0

50

100

150

200

250

300

350

400

1.00 2.00 4.00 8.00

Time(minutes)

of MICs

Conclusion

 From the result, the native model and the offload model achieve very
close performance for this work. Parallel implementation on O-hybrid
model shows the best performance.

 O-hybrid does not have load balanced problem. We can decide how
much data is going to be calculated in MIC or host CPU.

 O-hybrid model has a strong scalability.

 If we use more MICs, such as 16 MICs, the work can be completed in 30 minutes.

