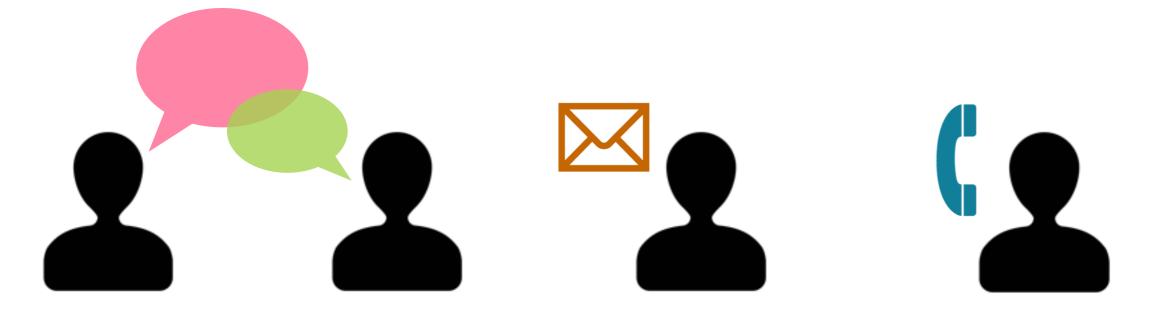
Learning Human Dynamics with Big Data from Online Social Networks

Lilian Weng Data Scientist @ Dropbox lilianweng.github.io

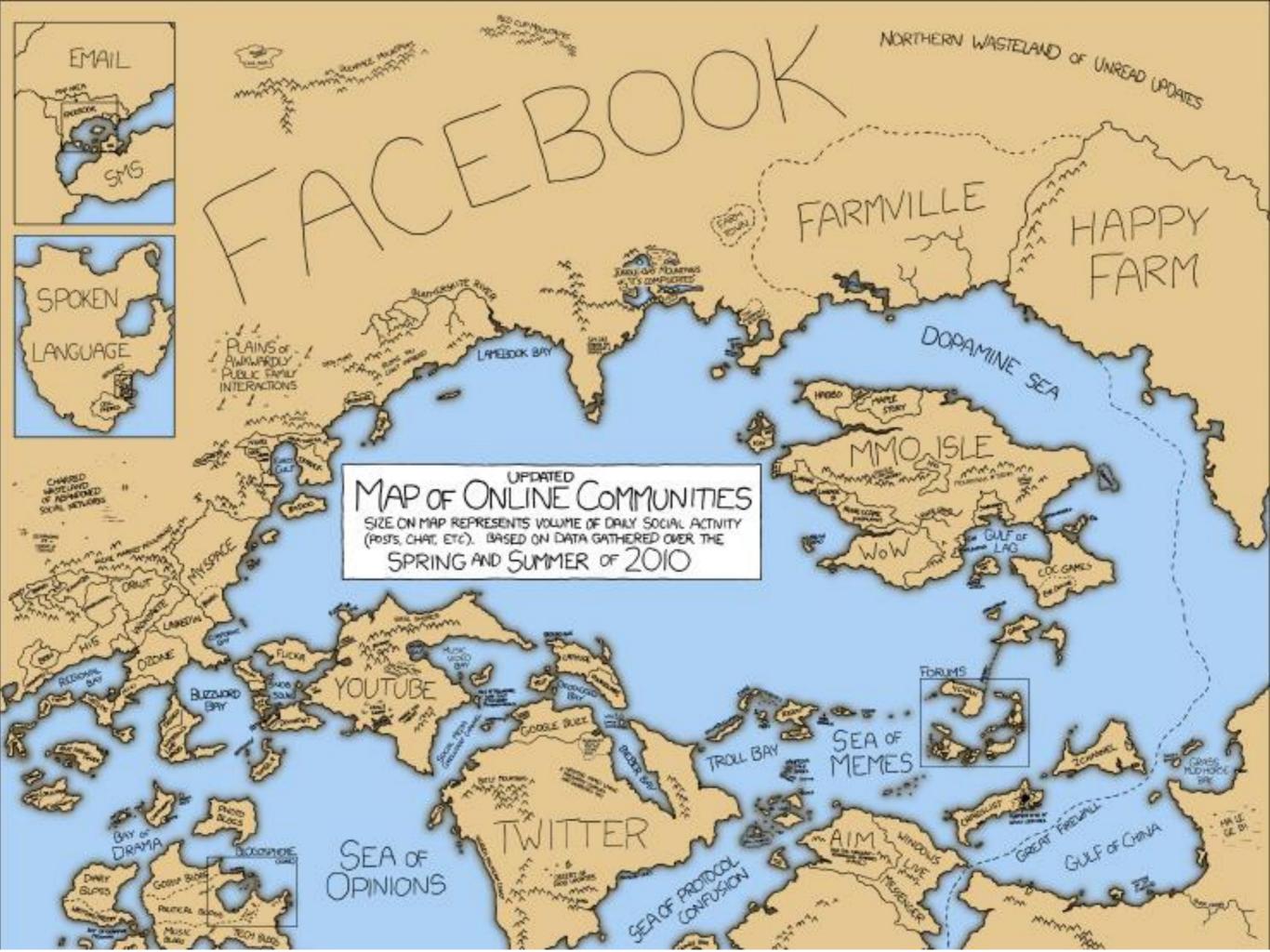
INDIANA UNIVERSITY Bloomington



Face2Face

Mail

Telephone



It becomes inexpensive and easy for people to produce, spread, and exchange information with each other.

G 24 PB data / Day

- Tube 20 Hrs uploaded / Min
- **50** Mil tweets / Day
- **f** 700 Bil min spent / Month
- **a**, 72.9 Items ordered / Sec
- 2.9 Mil emails / Sec

(IBM, 2012)

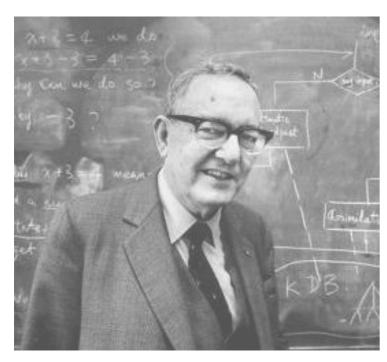
Computational Frameworks for Big Data

Soc

Track Observe

Analyze Nodel Predict

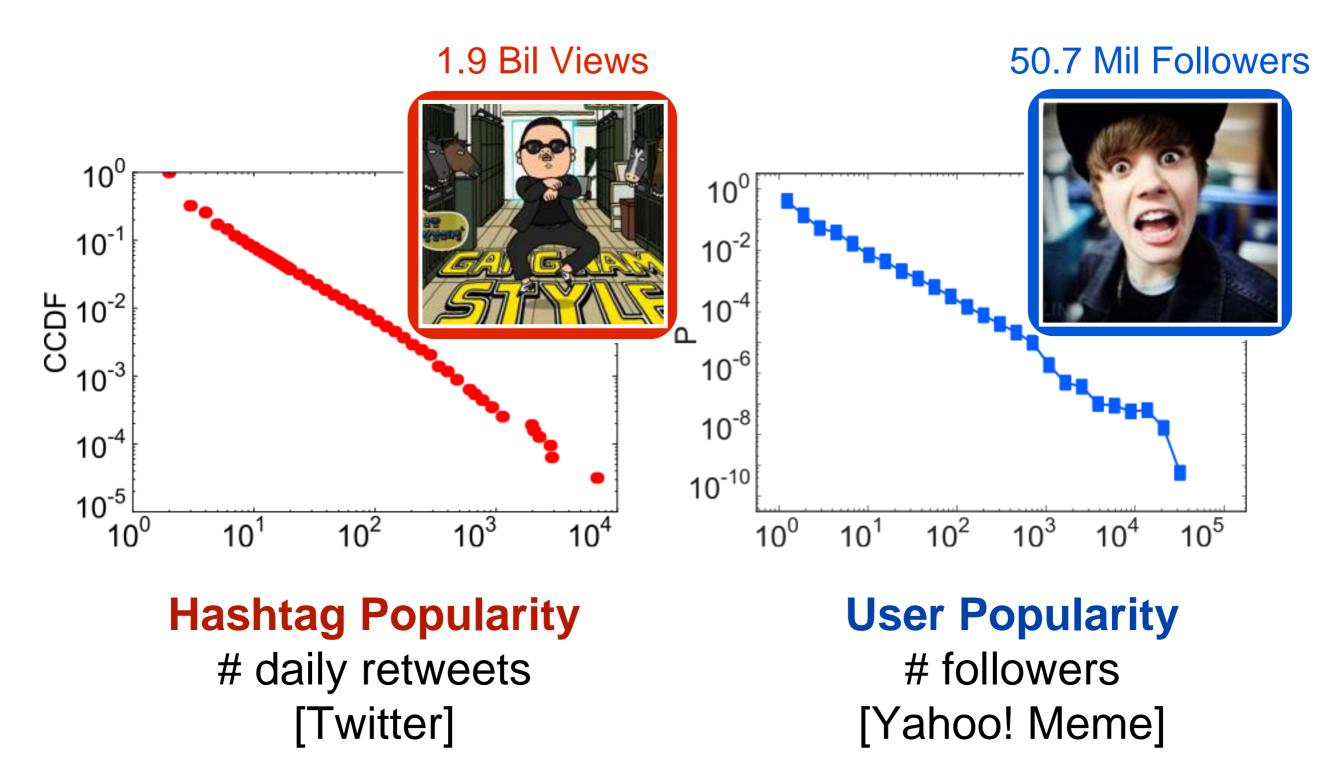
Attention economy



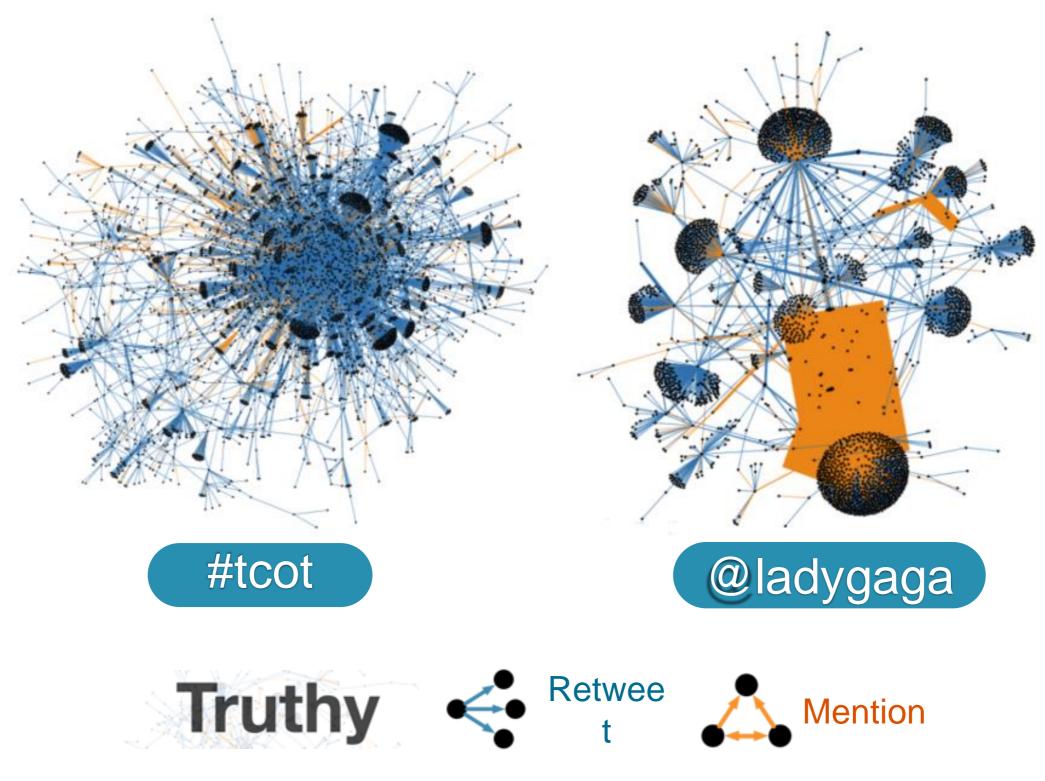
Herbert A. Simon, 1971

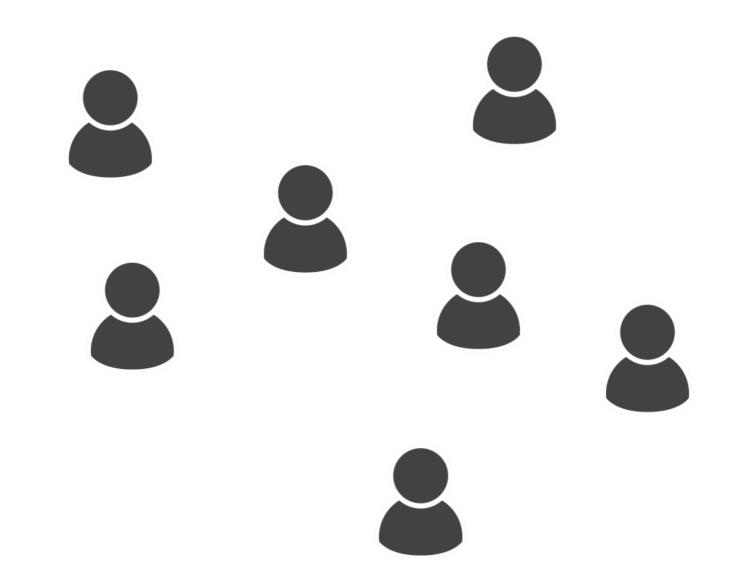
What information consumes if rather obvious: it consumes the attention of its recipients. Hence a wealth of information creates a poverty of attention and a need to allocate that attention efficiently among the overabundance of information sources that might consume it.

Fierce Competition but Winners still Exist

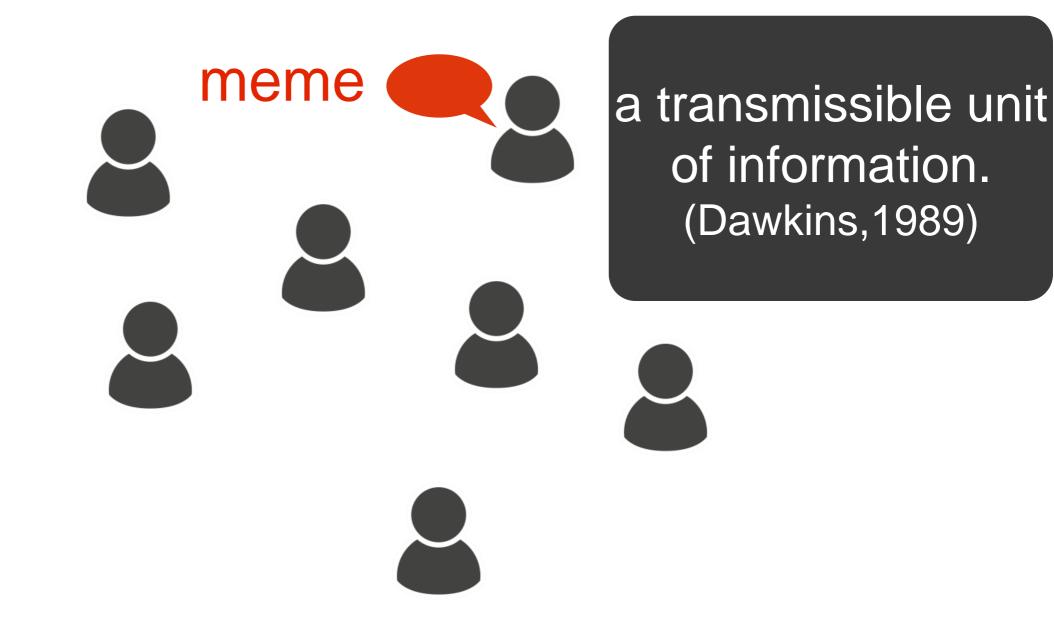


Information diffusion happens in the wild



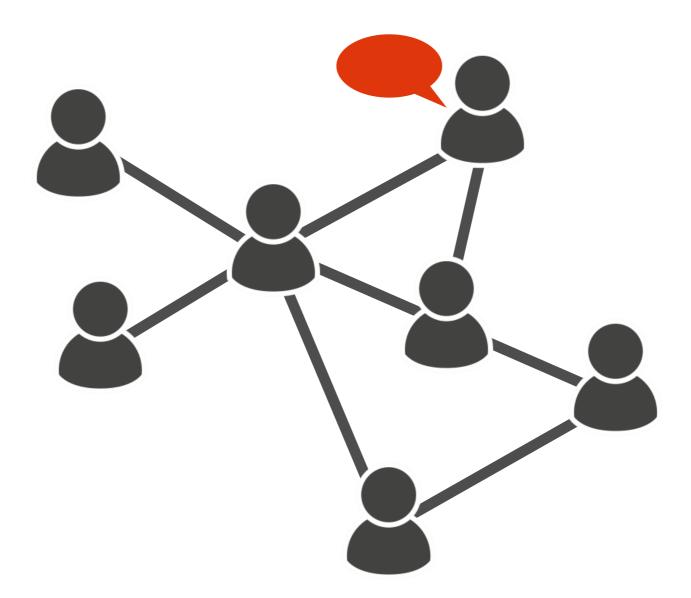


1. People who produce and share information

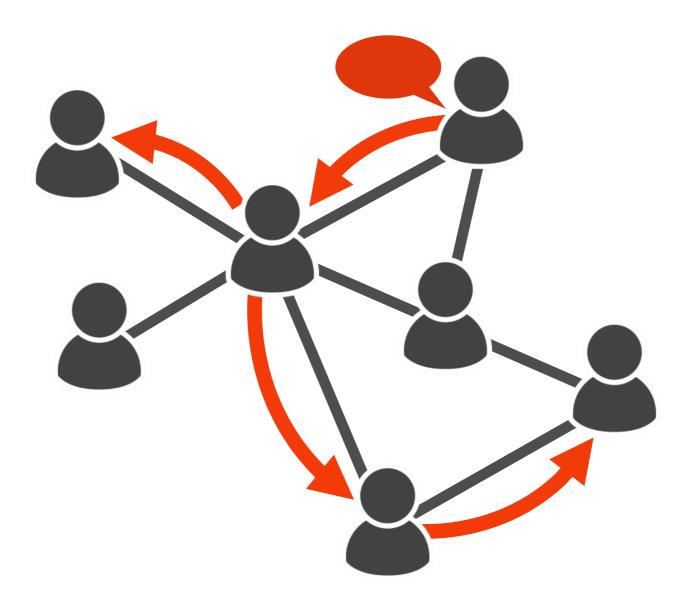


1. People who produce and share information

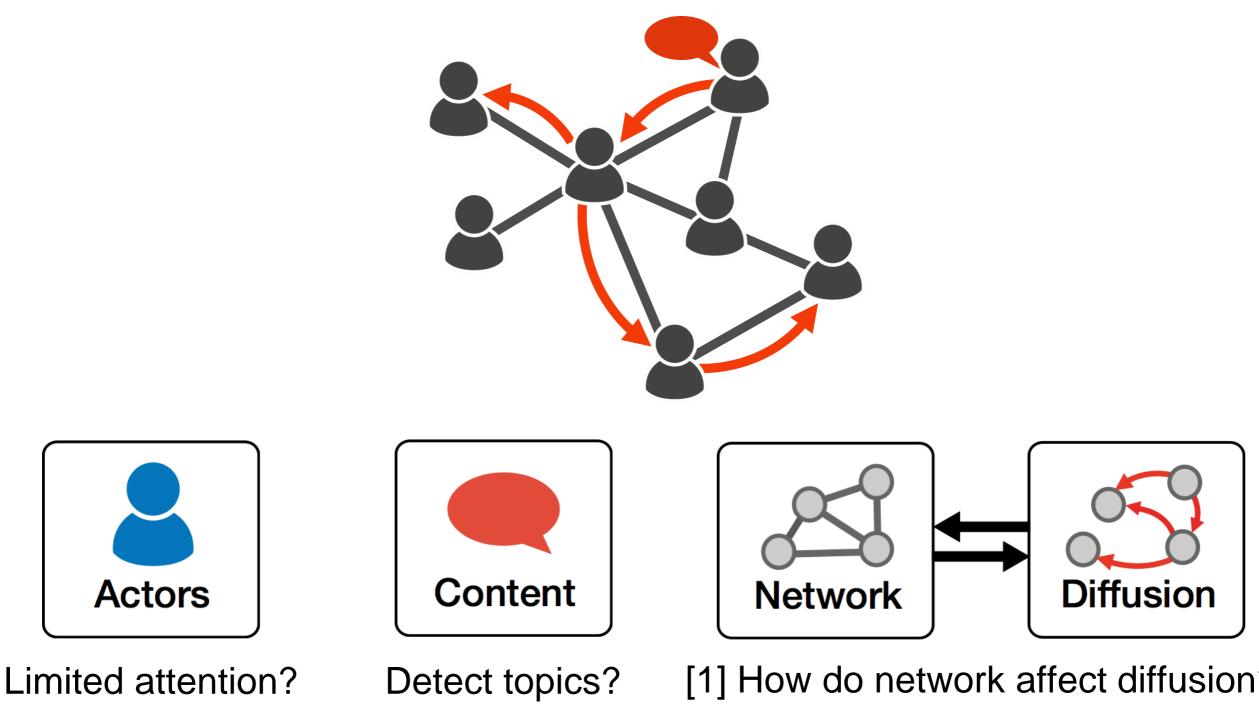
2. Content of transmissible messages



- 1. People who produce and share information
- 2. Content of transmissible messages
- 3. Social relationships forming the network



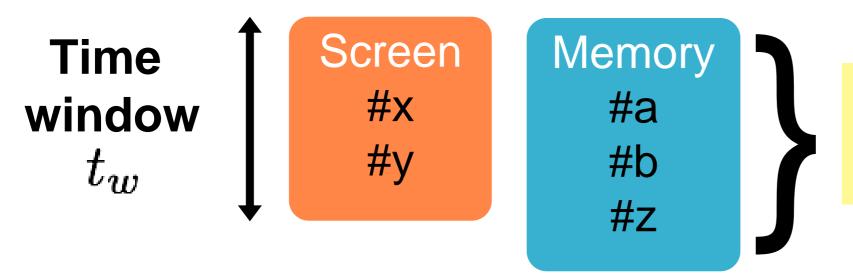
- 1. People who produce and share information
- 2. Content of transmissible messages
- 3. Social relationships forming the network
- 4. The mechanism of diffusion process



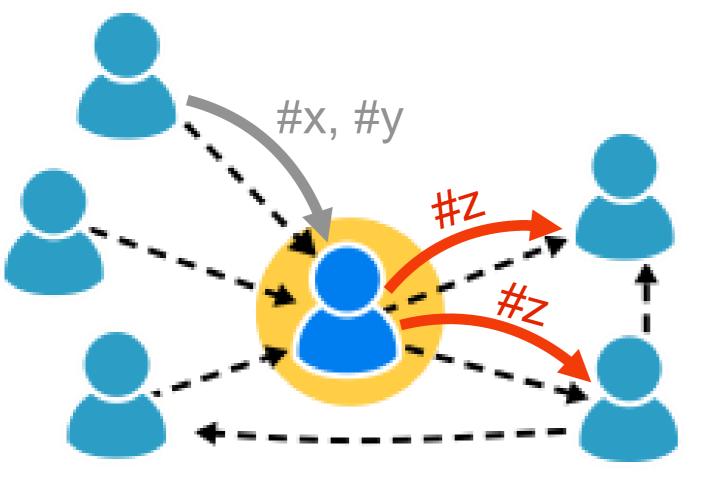
Attention allocation?

Detect topics? Topic diversity? [1] How do network affect diffusion? Viral meme prediction?

[2] How do diffusion affect network? Traffic flows in modeling network growth?



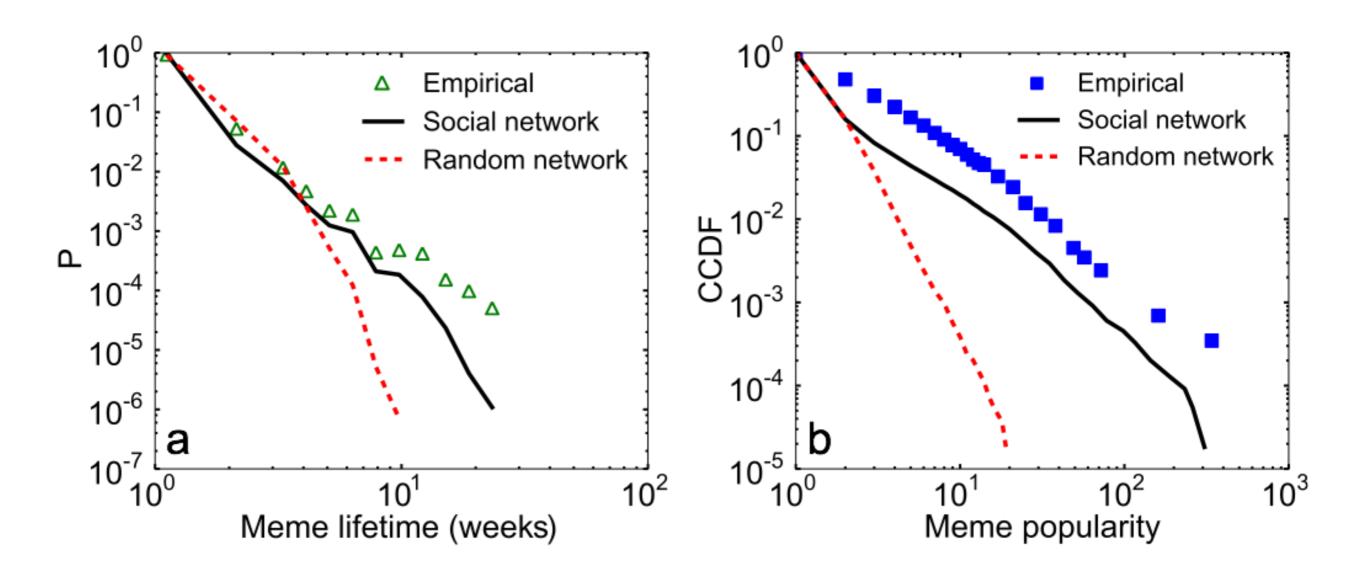
Both are finite; limited by time.



Screen: receiving posts from neighbors

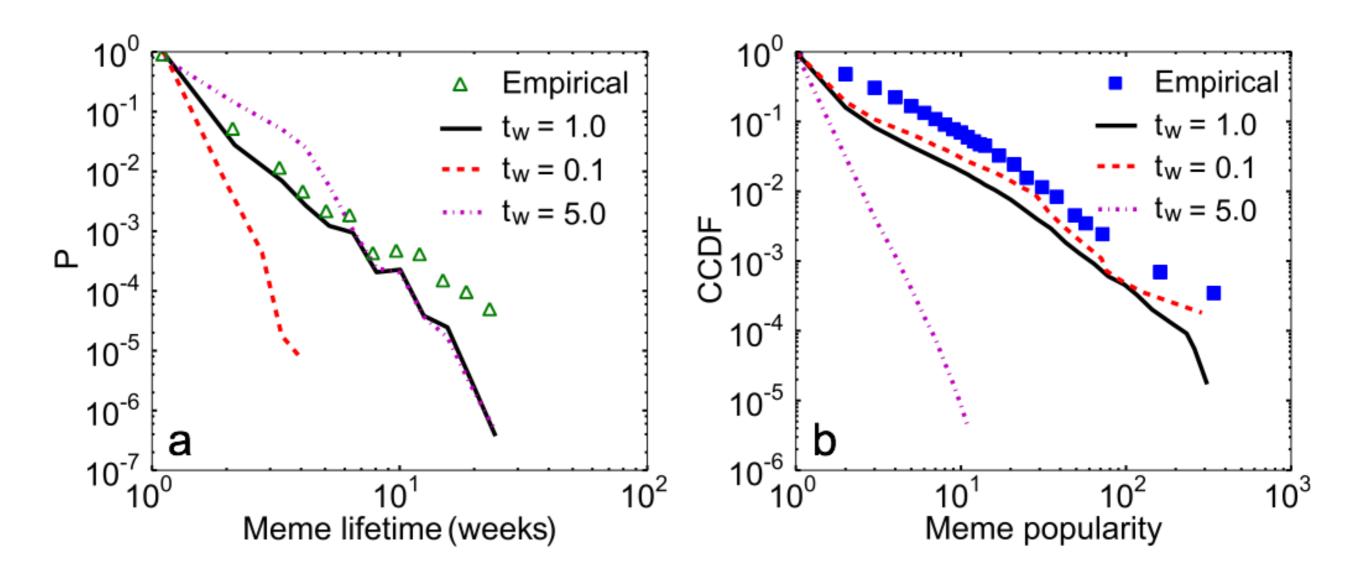
Memory: storing sent posts

Agent-Based Model



Social network structure matters

(Weng et al. 2012)



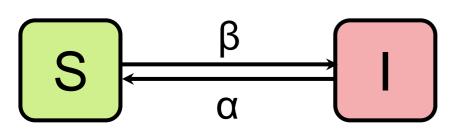
Attention matters

(Weng et al. 2012)

Heterogeneity of meme dynamics

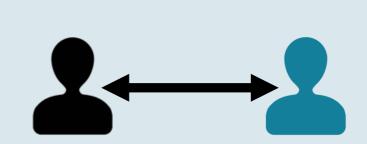
Information Diffusion

The SIS Model (Bailey, 1975)



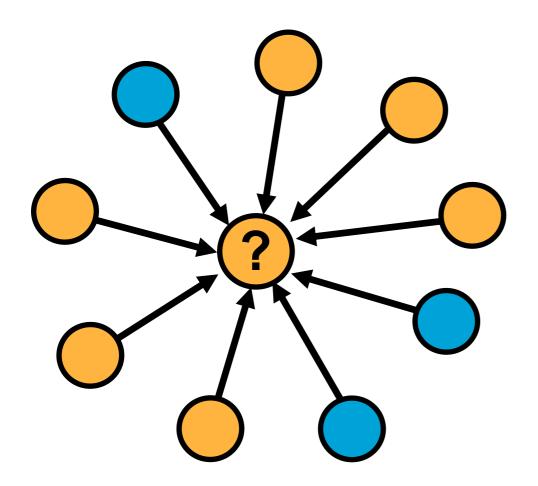
• The SIR Model (Anderson & May,1992) $\beta \qquad \beta \qquad \alpha \qquad R$

Epidemic models



Diseases Simple contagion

Information Diffusion



Threshold model (Granovetter, 1978)

- DBLP (Backstrom et al., 2006)
- Twitter (Huberman et al., 2008; Romero et al., 2011)
- Wikipedia (Cosley et al., 2010)
- Facebook (Ugander et al., 2012)

Community Trapping Effect

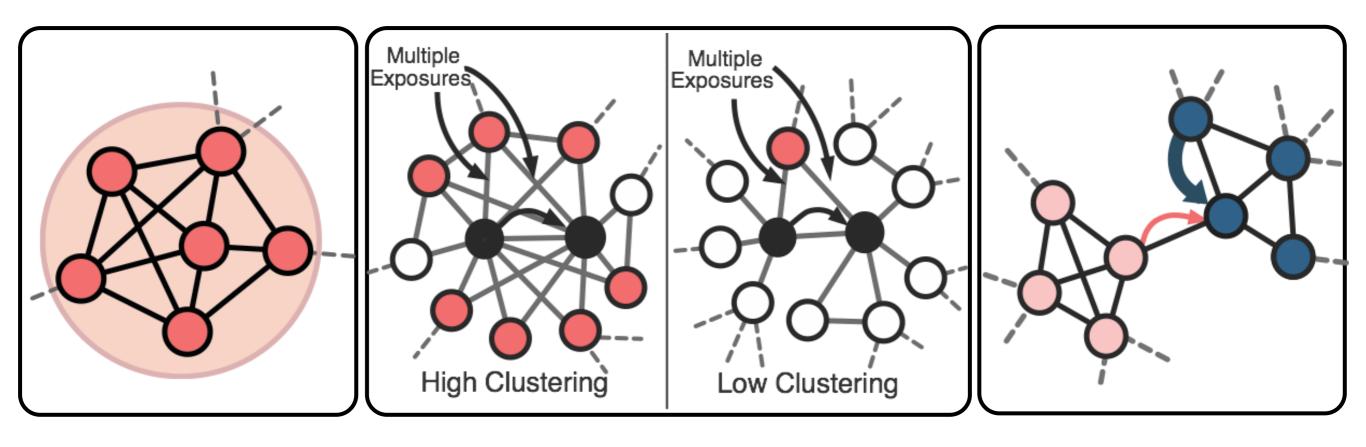
Structural Trapping

Social Reinforcement

(Centola, 2010)

Homophily

(McPherson et al., 2001)



Null Models

 $\mathbf{1}$

Community trapping effects

Network Reinforcement Homophily

M1: Random distribution

M2: Random diffusion

M3: Social reinforcement

M4: Homophily

Null Models

Community trapping effects

Network Reinforcement Homophily

M1: Random distribution

M2: Random diffusion $\sqrt{}$ Simple contagionM3: Social reinforcement $\sqrt{}$ $\sqrt{}$ M4: Homophily $\sqrt{}$ $\sqrt{}$

Null Models

Community trapping effects

Network Reinforcement Homophily

M1: Random distribution

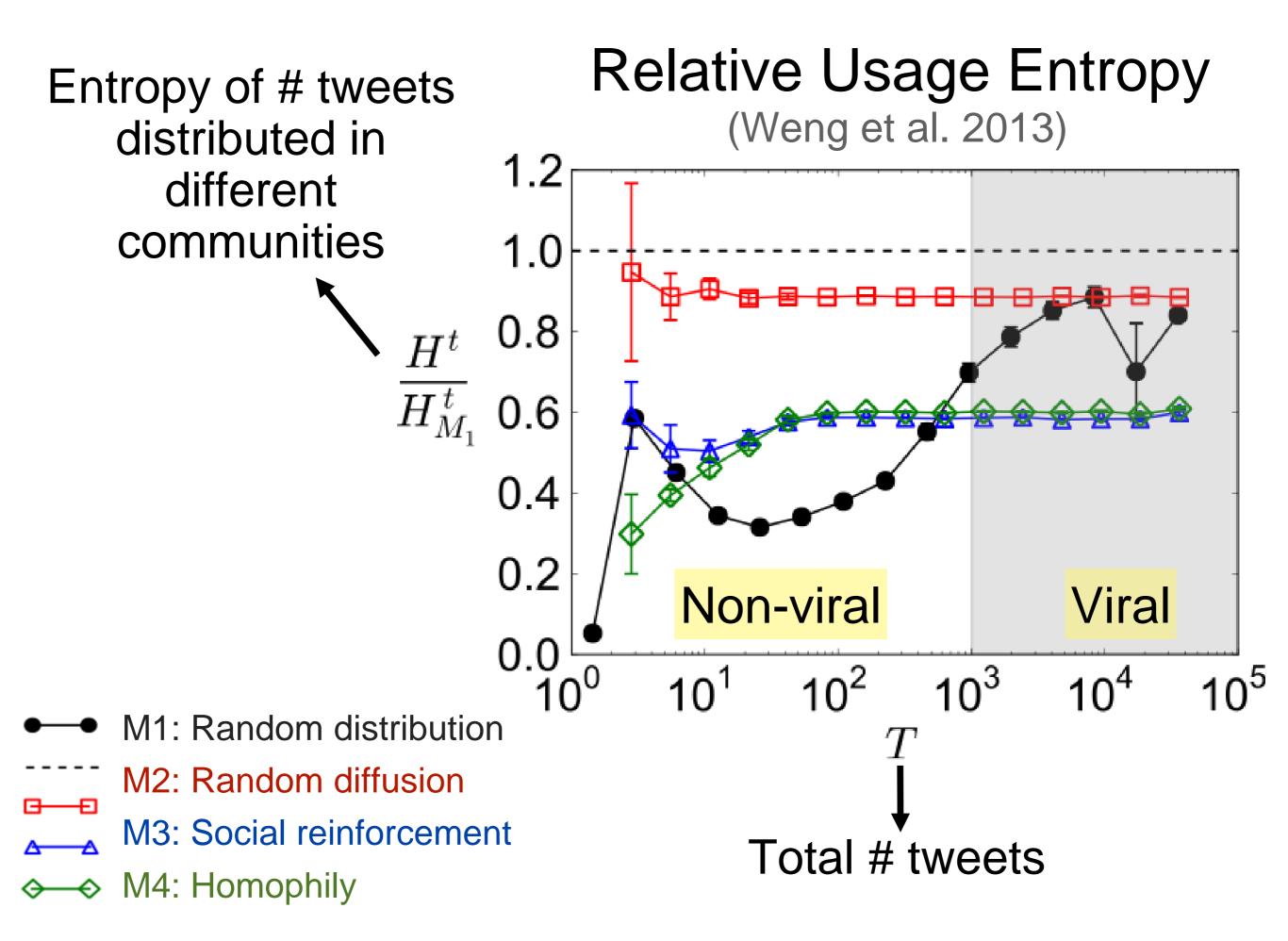
M2: Random diffusion

M3: Social reinforcement

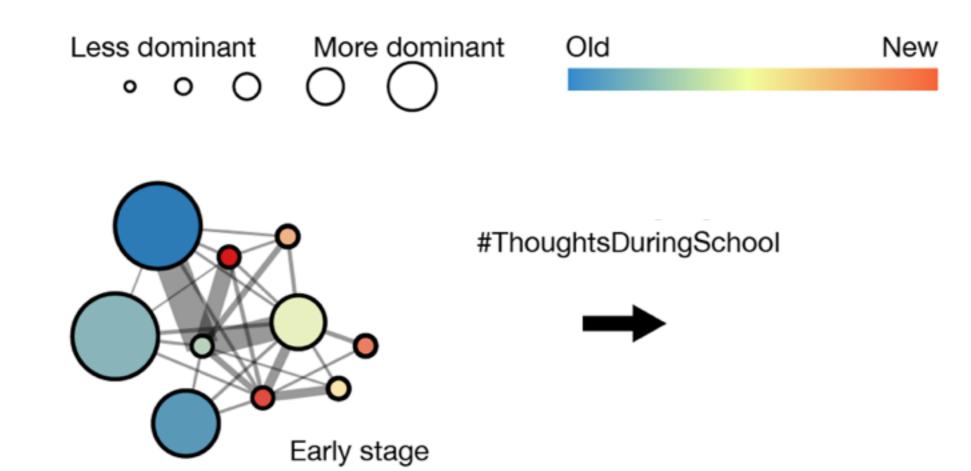
M4: Homophily

 $\sqrt{}$

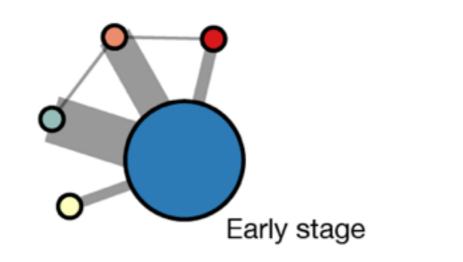
Complex contagion



Viral memes are less trapped by communities, more like <u>disease</u>. Can we predict the future meme virality by qualifying concentration across communities?



30 tweets



#ProperBand

30 tweets

Virality Prediction

Community-blind features

Early adopters

3%

 ΔF_1

Size of infection frontier

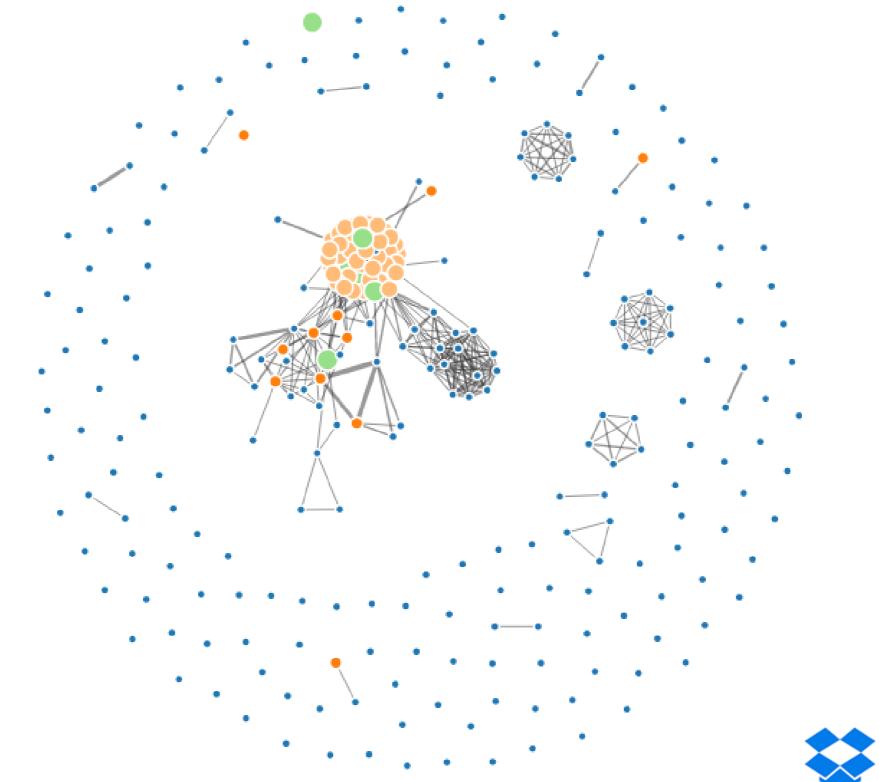
Binary classification Predict whether a meme is viral (>1000 tweets)

170%

- **Community-based features**
- 2 F # Infected communities
 - Entropy
 - Frac. intra-community RT/@

(Weng et al. 2013)

Collaboration Network @ Dropbox

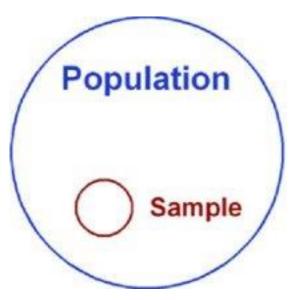


Big Data Challenges

- Data Sampling
- Universality
- Privacy
- Open Access
- Gap between Online and Offline Systems

Data Sampling

Most studies involve sampled datasets.



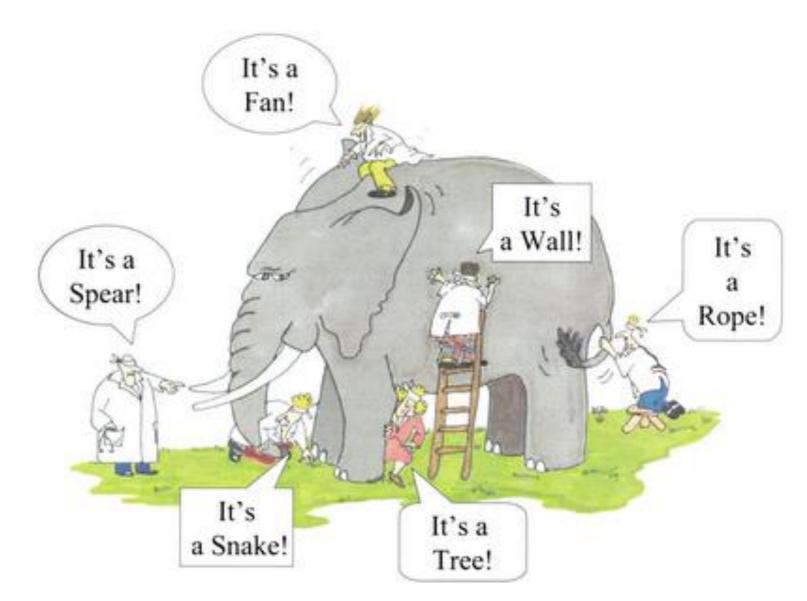
- Good or poor representation of the system?
- Incorrect sampling could lead to biased results.

Universality

- Most studies only used a single system or a snapshot of the system.
- *"blind men feeling the parts of an elephant"*(Lazer et al., 2009)

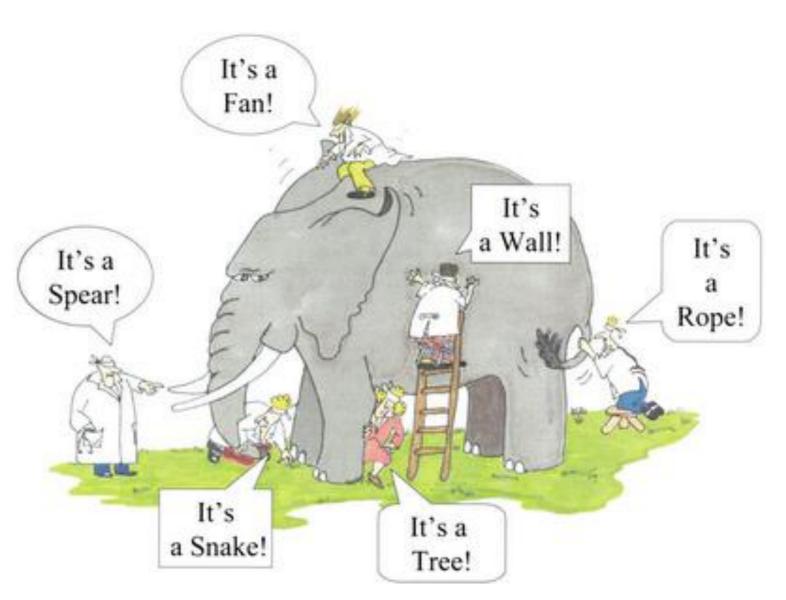
Universality

 Most studies only used a single system or a snapshot of the system.



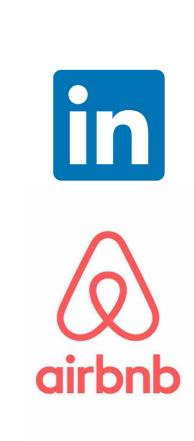
Universality

- Most studies only used a single system or a snapshot of the system.
- More future work is expected to study the longitudinal patterns on data with long history and to compare multiple platforms.



Privacy

- People exposure more personal information online.
- Look across data from multiple sources to decipher the trace of an individual user.
- Occupation, address, birth date, and social security number, personal schedules



Open Access

- Data is crucial in quantitative research.
- Some datasets cannot be public.
- No external replication or verification of the findings.
- Balance between open environment and privacy concerns.

Gap between Online and Offline Systems

- Online behavior is usually well curated and systematically managed [Ellison et al., 2006].
- Can we safely apply classical sociological theorems to online systems, or extend the findings derived from online big data to offline social movements and events?

Selected Papers

- L. Weng, A. Flammini, A. Vespignani, & F. Menczer. Competitions among topics in a world with limited attention. Nature Sci. Rep., (2)335, 2012.
- L. Weng, et al. The Role of Information Diffusion in the Evolution of Social Networks. In: KDD. 2013.
- L. Weng, F. Menczer, & Y.-Y. Ahn. Virality Prediction and Community Structure in Social Networks. Nature Sci. Rep., (3)2522, 2013.
- L. Weng, F. Menczer, & Y.-Y. Ahn. Predicting Meme Virality in Social Networks using Network and Community Structure. In: ICWSM. 2014.
- L. Weng & T. Lento. Topic-based Clusters in Egocentric Networks on Facebook. In: ICWSM. 2014.
- L. Weng & F. Menczer. Topicality and Social Impact: Diverse Messages but Focused Messengers. PLOS ONE. 2015.

