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Complex contagions and social movements

Threshold-based, or complex, models of social contagion may partly
explain the initiation of mass mobilizations and social movements
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Prior work

Threshold models of collective behavior and theoretical predictions

(Granovetter 1978, 1973); (Centola, Macy 2007); (Barash, Cameron,
Macy 2012)

Observational Studies: focus on empirical adoption thresholds

Coleman, et al. (1966); Valente (1996): empirical studies of social
reinforcement for medical practices and diffusion of innovations;
Romero, et al. (2011), Fink, et al. (2016): spread of hashtags on
Twitter; State and Adamic (2015): adoption of Equal-Sign profile
pictures on Facebook
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Overestimation of adoption thresholds
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At time t none of a’s neighbors
have adopted

By time t + dt all neighbors
have adopted. If a now adopts,
what was their actual adoption
threshold?
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This work

We formulate comparable probabilistic models of simple and complex
contagion to generate predictions of Twitter hashtag diffusion events

Using the follow network of 53K Nigerian 2014 users and true
adoption curves of 20 popular Nigerian hashtags, we

1) Perform efficient search for unknown infection parameters under both
simple and complex probabilistic models

2) Compare the explanatory power of each model with optimized
parameters against the true cumulative adoption curves

3) Show, under asynchronous simulation and an empirical follow network,
that when probabilistic infection parameters are not known, simple and
complex models are not distinguishable by distributions of observed
adoption thresholds
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Dataset

Used the public API to query
for tweets from around 45
Nigerian cities

Queried timelines of users
returned by geo queries

Looked at hashtag cascades
that began in 2014

Retrieved follow graph for 53K
active 2014 Nigerian Twitter
users using the public API
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Simulating asynchronous user check-in schedules

Define a check-in time as the
end of any 15-minute period
during which user has tweeted

Calculate each user’s hourly
check-in rate, λ

For simplicity, we assume
stationarity and a common
check-in rate across users

Used an average λ of 0.38 based
on the calculated check-in rates
of 39K of the studied users

Resampled check-in times for all
users every 10 simulations
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Probabilistic models of simple and complex contagion

Simple contagion model:

pk = p

Complex contagion model:

pk = εlo +
εhi − εlo

1 + e−g(k−k0)
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Simulations

Restrict analysis to first 24 hours after the first day of significant usage of a
tag

We do not model the adoptions of instigators nor adoptions due to external

influence. We use the true schedule of these “seeds” and predict adoption

cascades of remaining non-seed users of the full 52K-sized network,

modeling asynchronous random time-line checking

9 / 15



Parameter fitting

Range of 32 k0 values to search

2 1210 14 168 64

1) Use binary search over unknown parameter values. After 5 simulations, if
majority of interpolated adoption predictions are above the true adoption
curve, we try larger k0; if below, test smaller k0

2) Use lower and upper bounds found in stage 1) for a finer-grained search.
Select parameter with the lowest average `2 prediction error
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Simulation results (based on 100 simulations per tag)

(a) Complex (k0 = 18) (b) Simple (p = 0.0064)

(c) Complex (k0 = 7.00) (d) Simple (p = 0.0110)
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Using observed thresholds (k) to separate complex from
simple contagion (#AmericaWillKnow)

For three simulations of each
model, plotted the percentage of
adopting users with k ≤ 2 vs.
those with k > 5

If k were a reliable measure, we
would expect to see a separation
between the simulations of
complex and simple models and
their parameters; we do not

We also see that k consistently
overestimates the level of social
reinforcement indicated by the
model parameters

12 / 15



Conclusions and future work

(e) Complex (k0 = 7.00) (f) Simple (p = 0.0110)

Probabilistic simulation methods show promise at identifying phenomena
that is better explained by social reinforcement

Most tags are explained by the simple model (as expected), some tags yield
large variations in adoption curves (e.g. BringBackOurGirls), and some tags
fit neither model most likely due to external spread

Plan to reduce effects of “superemitters” to address early takeoff predictions
and more accurately model user check-in rates for non-stationary and
heterogeneous behavior
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Further reading

Fink, C., Schmidt, A., Barash, V., Cameron, C., & Macy, M. (2016a).
Complex contagions and the diffusion of popular Twitter hashtags in
Nigeria. Social Network Analysis and Mining, 6(1), 1-19.

Fink, C., Schmidt, A. C., Barash, V., Kelly, J., Cameron, C., & Macy,
M. (2016b). Investigating the Observability of Complex Contagion in
Empirical Social Networks. In Tenth International AAAI Conference
on Web and Social Media (pp. 121-130). Menlo Park, CA: AAAI
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Thank You!

Questions?

Contact: clayton.fink@jhuapl.com
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