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Introduction - Applications - 1
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Introduction - Applications - 2
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How to Detect Anomalous Patterns?

@ What are anomalous patterns?
o A subset or group of data records that are interesting and unexpected

@ How to detect anomalous patterns?

o We model the distribution of normal patterns, and then any patterns
(subsets) that deviate significantly from normal patterns are returned
as anomalous patterns.

@ What are the challenges?
o Hard problems in general (e.g., exhaustive search takes time O(2")).
@ What are the limitations of existing methods?

e Most existing methods are designed based on specific assumptions of
distributions of normal patterns.

e The prior knowledge about anomalous patterns is not supported.

e There is no unified and user-friendly framework that supports the
detection of all kinds of anomalous patterns.
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Case Study: Disease Outbreak Detection
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Suppose Data = {d,, d,,-:-,dy}, where d; =
(ct, b}), the pair of reported and expected
number of flu cases in a county i on day t.

4

Hypothesis Testing :

Null hypothesis (Hp):
cf~Poisson(qgay - bY)

Alternative hypothesis (H; (S)),
where § € {1,---,N}:
cf~Poisson(q;, - b}), ifi €S

cf~Poisson(qoy: - bf), otherwise

The shaded region stand for
flu outbreak regions
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Suppose Data = {d,,d,, -, dy}, where d; =

(cf, bf), the pair of reported and expected
number of flu cases in a county i on day t.

4

Hypothesis Testing :

Null hypothesis (Hy):
cf~Poisson(bf)

Alternative hypothesis (H,(S)),
where S c {1,---,N}:
cf~Poisson(q;, - b}), ifi €8

ch~Poisson(bl), otherwise

The shaded region stand for
flu outbreak regions
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Example APDL language for Kulldorff's Scan Statistic

Suppose data = {di,- -, dy}, where real q.all

di = (cf, b}), the pair of reported and real q-in

expected counts of flu cases in a county real q-out

i on day t. constrain(g-all > 0)
constrain(g-in > q-out)

Denote V ={1,--- N}, EC V x V, constrain(q-out > 0)

C:{Cf7"'>clil}vB:{bfv"'7b}r\l} V,E,C,B:

LoadGraphData(FileName)

set S
constrain(S C V)
constrain(S is connected)

Hypothesis Testing:
@ Null hypothesis (Hp):

o ¢! ~ Poisson(qay - b}) hypothesis = {null, alternative}
@ Alternative hypothesis (H1(S)), if h%/Opro\EhIenss :__ null
where S C V: C(v) ~ Poisson(q-all * B(v))
. . else hypothesis == alternative:
e cf ~ Poisson(qgi, - bf), if foryB in S-
i€eS: C(v) ~ Poisson(q_in * B(v))
i for v not in
¢; ~ Poisson(gin - bf), C(v) ~ P0|sson(q_out * B(v))
otherwise. J InferS )
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Example APDL language for Expectation Scan Statistic

Suppose data = {di,- -, dn}, where

di = (cf, b}), the pair of reported and real q_in

expected counts of flu cases in a county constrain(qg-in > 1)

i on day t. V,E,C,B =

Denote V = {1,--- N}, EC V x V, LoadGraphData(FileName)

set S
C={c, - ,cn}, B={bi,---, by} constrain(S C V)
constrain(S is connected)

iyzeicss Vet hypothesis = {null, alternative}

@ Null hypothesis (Hp): if hypothesns == null:
¢ . ¢ for v i
e ¢! ~ Poisson(bf) C(v )~ Poisson(B(v))
@ Alternative hypothesis (H1(S)), elsef:ryeoit]h%s:ls == i
where S C V: C(v) ~ Poisson(q_in x B(v))
t ~ Poi bt if for v nat in S:.
e ¢ ~ Poisson(qgi - by), i C(v) ~ Poisson(B(v))
i €S; cf ~ Poisson(bf), Infer S )
otherwise.
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Case Study: Traffic Congestion Detection in Road Network

labeled as congested (e.g., 911 call) 12 24 (24,1.5)

23 mph (historical mean: 22, std: 1)

14 (19,2.3)
1 ‘ 3 17 (25,1.2)
- ‘18(21,1.9)

16 (24, 1.1) 10 (23,1.3) 20 (24,1.7

Not concurrently
congested (e.g.,
“TT——— historical pattern)
23(22,0.6) 22 (24,2.5) 25 (27,1.0) 19 (28,1.0)
7 8 9
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Case Study: Traffic Congestion Detection in Road Network

Suppose data = {di,- -, dn}, where real q_in
di = (xf, ut, of), the tuple of reported constrain(qg_in > 1)
speed, expected mean and standard V.E, X, u,0 =
deviation of normal speed in a road link LoadGraphData(FileName)
i and hour t. set S
Hypothesis Testing: constrain(S C V)
constrain(S is connected)
@ Null hypothesis (Hp): set So = {5}
o Xit ~ N(#f7gf) constraing{So Q}S)
. . set S = {3,4
@ Alternative hypothesis (H1(S)): constrain(|Sy N §| < 1)
o ¢l ~ ./\/(q,n wt ot), if hypothesis = {null, alternative}
~ t if hypothesns == null:
’65' FI N(u‘l’ I)’ for v in
otherwise. x(v) ~ N( (v),o(v))
Prior Knowledge: 1) Road link 5 is elsef:ypothes&s == alternative:
: rvin
currently congested (from 911 calls); 2) X(v) NN(q in-u(v),o(v))
road links 3 and 4 are not congested o et im &
concurrently (patterns from historical X(v )NN( (v),a(v))
data). Infer S )
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APDL Architecture

Dataset  Pattern Description in APDL

J 4

APDL Language Compiler

Transformation to Set
Optimization Problem

Customized Generalized
Algorithms Algorithms

1

Anomalous Patterns (Subsets)
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Experiments: Pollution Detection in Water Sensor Network

o Water pollution data set: The "“Battle of the Water Sensor Networks”
(BWSN) provides a realworld network of 12,527 nodes, and 25 nodes
with chemical contaminant plumes that are distributed in four
different areas.

@ The spreads of these contaminant plumes on graph were simulated
using the water network simulator EPANET that was used in BWSN
for a period of 8 hours.

@ The task of anomalous pattern detection is to detect the infected
nodes by chemical contaminant plumes.
o Competitive methods:
o Depth First Search Graph Scan [Speakman et.al., Journal of
Computational and Graphical Statistics, 2015]
o Additive Graph Scan [Speakman et.al., Proc. 13th IEEE International
Conference on Data Mining, 2013]
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Comparison on Recall

[l:l Our Method I Additive Scan [ Depth First Scan]

10 Comparison of Recall

08} - — - 4

06f - - : 1

recall

04t - - : 1

0.0

0 2 4 6
noise level

niversity at Albany, SUNY) NSF-IBSS/CDI Specialist Meeting August 12, 2015 5/18



Comparison on Recall

[I:I Our Method [ Additive Scan ] Depth First S:an]

10 Comparison of Precision
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Comparison on Run-Time

[I:I Our Method [ Additive Scan [ Depth First Scan]
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The End
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