

Information Diffusion on Social Networks

Zhuo Chen Lanxue Dang Xinyue Ye Jay Lee

Outline

- **1.** Introduction
- 2. Social Network Tools and Algorithms
- 3. Simulation and Analysis of Information diffusion
- 4. Concluding Remarks
- 5. Next Tasks

Research Questions

- To what extent the <u>Structure</u> of a social network, for example, the different classic network structures, facilitate the process of information diffusion?
- To what extent would social networks account for the <u>process of</u> information diffusion since information does not always spread through social links, i.e., other avenues being the traditional channels of TV/radio/newspaper broadcasting? Use real network data.
- How many <u>early adopters (Seed nodes</u>) would be needed to disseminate the information in a certain social network so to ensure wide enough coverage and where are their best locations in the network if to achieve such (the identification methods of early adopters)?

Software Architecture

Data structures, utility, common classes

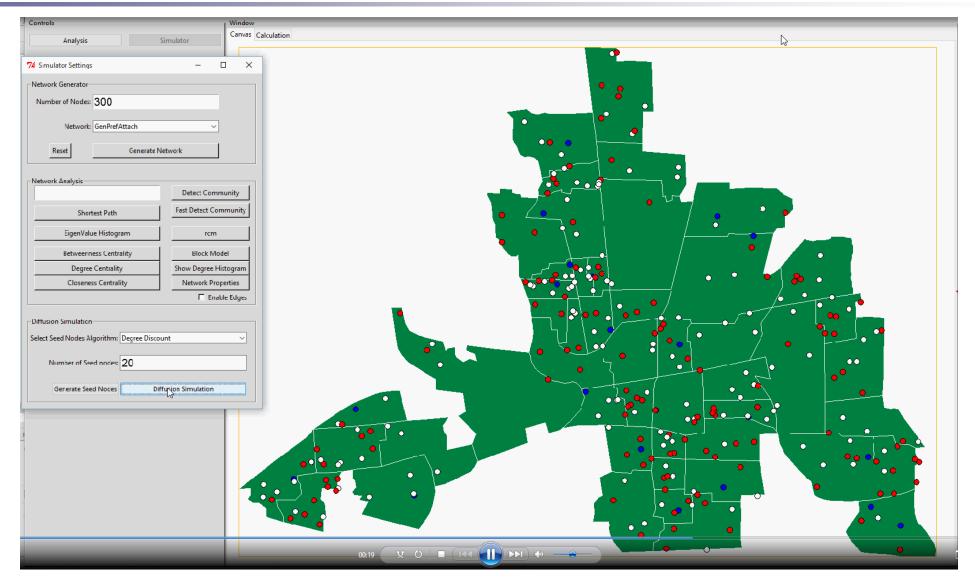
Simulating information diffusion and visualization					
Algorithms					
Greedy algorithm, degree discount, degree centrality, betweenness centrality, closeness centrality, eigenvector centrality Claust-Newman-Moore					
Network Generator	Network Analysis				
Preferential attachment Small World	Centrality(node): Degree Betweenness Closeness	Characteristics: Number of nodes Number of edges Modularity		Community detection	
Lattice Random	Eigenvector	Diamete	r		

Models

Data sets

Network Generator

Simulating Diffusion



Network Analysis

Network analysis was designed to explore the characteristics of a network.

Statistic characteristics of networks Number of nodes Number of edges Modularity, and Diameter

Centrality (nodes): Degree Betweenness Closeness Eigenvector

Network Analysis

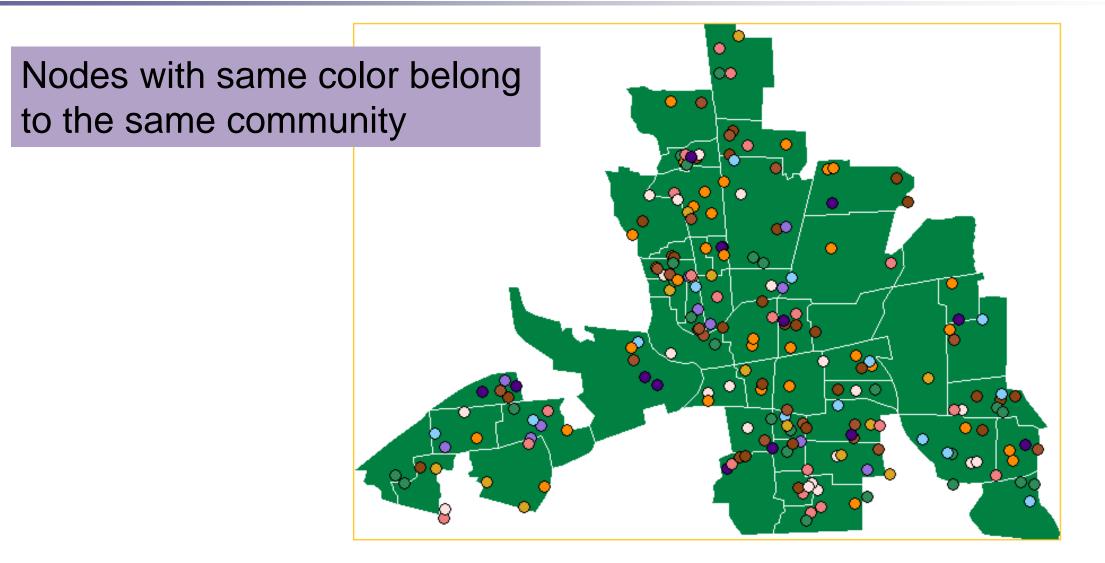
	Degree Centrality	Betweenness Centrality
J=200	0: 0.0502512562814	0: 0.0469314647296
=397	1: 0.140703517588 2: 0.0954773869347	1: 0.231325451293 2: 0.115469049112
vg. D= 3.97	3: 0.130653266332	3: 0.192778644315
	4: 0.115577889447	4: 0.169508022367
Nodularity = 0.488	5: 0.115577889447	5: 0.16661140247
Diameter = 6	6: 0.0402010050251 7: 0.0502512562814	6: 0.0291526194093 7: 0.053529079177
	8: 0.035175879397	8: 0.0242713253976
	9: 0.0402010050251	9: 0.0331159380305
	10: 0.0804020100503 11: 0.0402010050251	10: 0.106586233165 11: 0.0281273348762
	12: 0.0402010050251 12: 0.0150753768844	12: 0.00615982922345
	13: 0.0301507537688	13: 0.0140235180158
	14: 0.0100502512563	14: 0.0
	15: 0.0753768844221 16: 0.0452261306533	15: 0.0802420619209 16: 0.0408266635466
	17: 0.035175879397	17: 0.0213548391579
	18: 0.0251256281407	18: 0.0114090523635
	19: 0.0251256281407	19: 0.0121141411781
	20: 0.0452261306533 21: 0.0100502512563	20: 0.0387780484049 21: 0.00138947254617
	22: 0.0804020100503	22: 0.0903072755418
	23: 0.0201005025126	23: 0.00858366714922
	04 0 0100500510520	24: 0.0

Community Detection

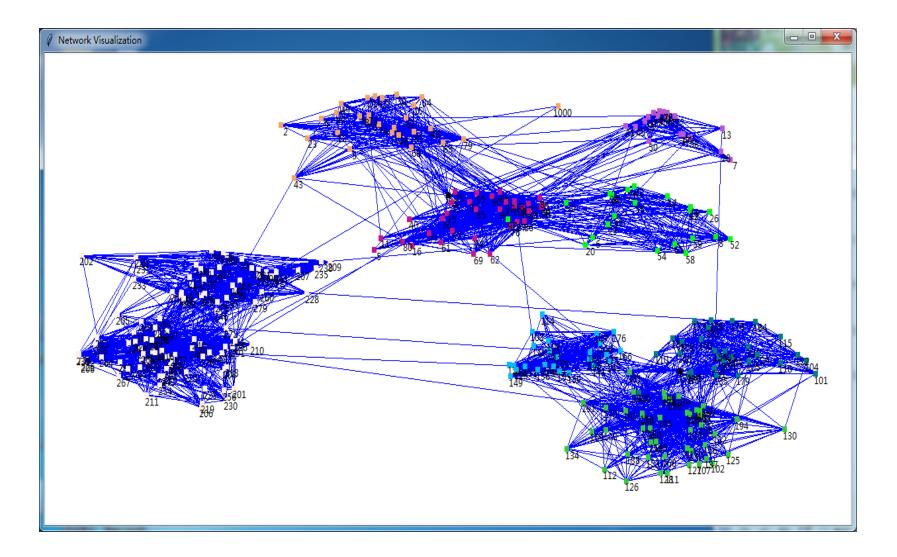
Three methods:

- 1. Order Statistics Local Optimization method Statistical significance, directed/undirected, with/without weights
- 2. Clauset-Newman-Moore community detection Very large networks
- 3. Girvan-Newman community detection Based on betweenness, progressively removing links until left with those between communities

Community Detection



Community Visualization



Information Diffusion Simulation

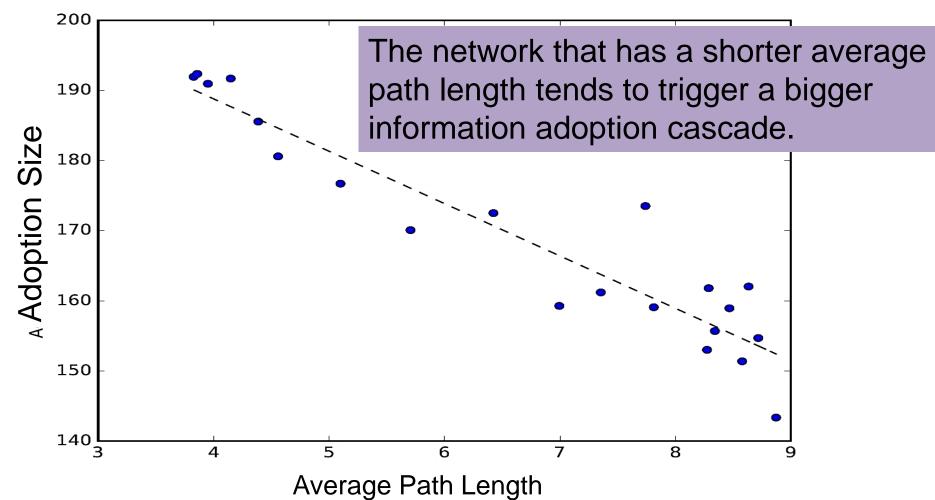
Six centralities and heuristic algorithms for selecting seed nodes: 1. Greedy algorithm 2. Degree discount 3.K-shell 4. Betweenness centrality **5.**Closeness centrality 6. Eigenvector centrality

Information Diffusion Simulation

- Two information diffusion models:
- 1. Linear threshold model
- 2. Independent cascade model

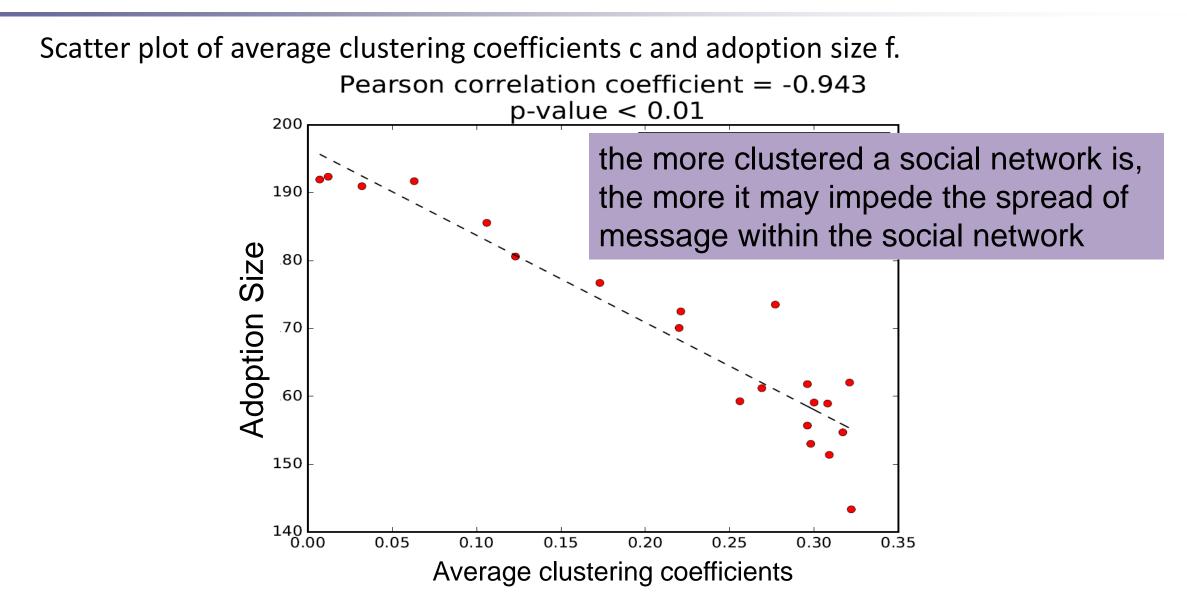
Analyses and Results - I

Network Topology and Spread Efficiency



2016 IBSS Workshop – KSU Team

Adoption Rate vs. Avg Clustering Coeff.



²⁰¹⁶ IBSS Workshop – KSU Team

Analyses and Results - II

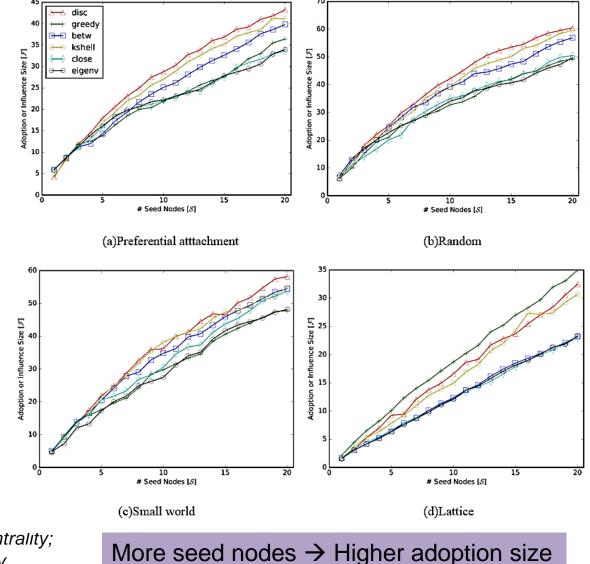
Centralities and **Heuristics** Experiments

- Six different centralities and heuristics were tested on the type of structure in the networks: *preferential attachment, random, small-world, and lattice networks*, with different number of nodes (*N* = 800, 400, and 200)
- Each type of networks was used in the simulations with three different sets of propagation probabilities:

a)
$$p_{op}$$
 =0.4, p_n =0.3,
b) p_{op} =0.3, p_n =0.2 and
c) p_{op} =0.2, p_n =0.1.

Analyses and Results - Continued

- Information diffusion on four types of simulated networks with six centralities and heuristics.
- The total number of nodes is N = 200; Propagation probabilities for opinion leaders and normal people are $p_{op} = 0.2, p_n = 0.1$.

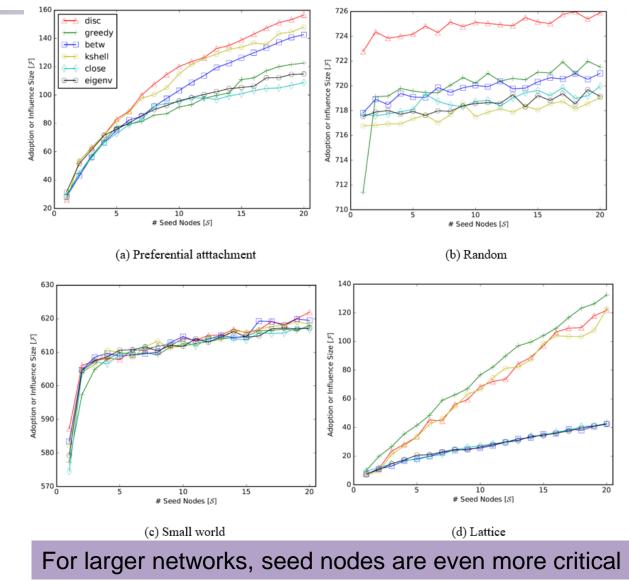


Disc: degree discount; Greedy: greedy algorithm; Betw: betweeness centrality; kshell: K-shell; close: closeness centrality; eigenv: eigenvector centrality

2016 IBSS Workshop – KSU Team

Analyses and Results - Continued

- Information diffusion on four types of artificial networks with six centralities and heuristics.
- The total number of nodes is N = 800; Propagation probabilities for opinion leaders and normal people are $p_{op} = 0.4, p_n = 0.3$



Analyses and Results - III

- Evaluation of the efficiency of diffusion on each early adopter in three different networks.
- S denotes the rank of seed nodes (early adopters); PA refers to preferential attachment.
 The network size N = 200

		<i>p</i> _{op} =0.2		$p_{op}=0.3$ $p_{op}=0.4$					
S	PA	small-world	random	PA	small-world	random	PA	small-world	random
1	3.204	3.7	5.316	7.427	27.155	37.945	11.554	133.455	121.207
2	3.384	3.847	3.471	4.054	13.608	9.761	10.045	8.394	9.432
3	2.351	2.77	6.314	4.895	7.552	12.217	3.455	0.581	-0.878
4	1.597	3.122	3.014	3.634	10.439	4.619	5.247	1.326	0.447
5	2.441	3.396	2.113	2.065	6.141	2.394	3.201	-0.199	0.46
6	1.576	1.935	3.532	2.708	6.36	3.202	3.021	0.476	0.352
7	1.519	2.868	2.032	2.059	2.15	3.651	2.421	0.384	-1.505
8	0.907	2.965	2.614	1.959	3.263	1.453	0.049	-0.531	0.295
9	1.524	2.355	2.386	-0.193	2.503	2.367	5.168	-0.57	0.526
10	0.235	-0.757	1.337	3.229	-0.601	0.987	1.706	-0.185	-1.54
11	0.546	2.776	1.742	0.791	1.717	1.335	1.628	-0.458	0.355
12	1.443	0.23	2.121	0.745	-0.517	0.992	0.698	-0.547	-0.551
13	0.113	2.315	1.602	0.877	4.669	1.035	0.433	-0.516	-0.355
14	1.183	1.298	0.675	0.38	0.463	-1.547	0.595	-0.042	-0.384
15	-0.165	-1.338	0.271	1.267	-1.206	2.416	0.917	-0.662	-0.904
16	0.797	2.68	0.034	-0.153	0.486	0.081	0.73	0.011	-0.414
17	-0.43	0.617	1.285	0.669	1.698	1.02	1.073	-1.095	-0.603
18	0.783	1.929	0.689	0.722	1.132	-0.669	-0.451	-0.203	-0.463
19	-0.191	1.717	0.001	-0.205	0.447	-0.843	0.915	-1.263	-0.903
20	0.389	-0.194	-0.085	0.361	2.158	1.591	-0.279	-0.166	-0.14

Propagation probability affects small-world networks and random networks the most

Analyses and Results – IV

Real Network Examination

-Bernardo wildfire tweets:

Table. Result of information diffusion in Bernardo wildfire tweets under 5-day partition.

Time-range	Seed accounts	Influence
Day 1	KUSI_News, RSF_Fire	622
Day 2	SanDiegoCP, thesandiegonewz, twit_san_diego, sandiegobnews, 10News, ooph, dancohenCBS8	447
Day 3	blufinki	142
Day 4	BlazonLaurels, EdZieralski, jenniferedougla	213
Day 5	thesandiegonewz, AthensMarketSD, KPBSnews	52

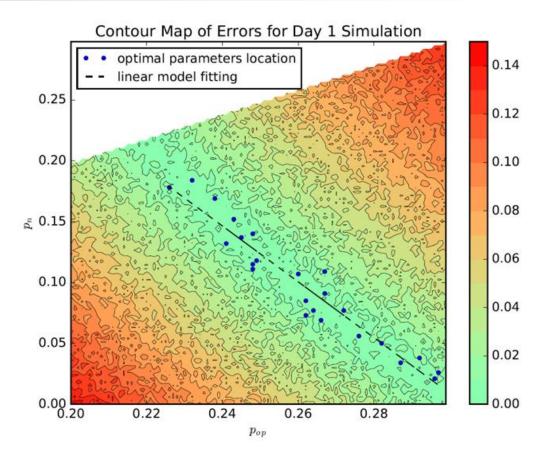
Analyses and Results – V

Real Network Examination

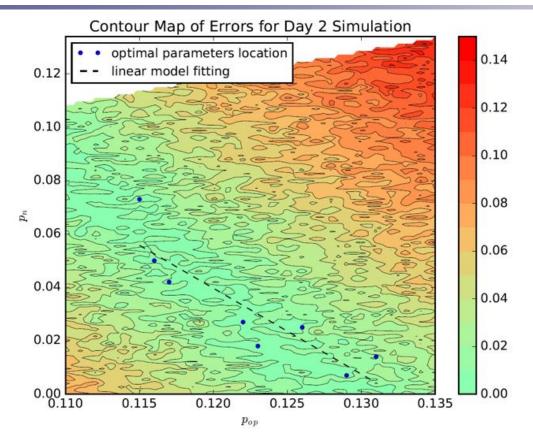
- To find the parameters of the information diffusion model that could mimic the information diffusion in Bernardo wildfire:
 - -Bernardo wildfire network was imported
 - Grid search was conducted for emulating different propagation probabilities
 - »With a fixed increment of 0.001, starting with 0.1 in each simulation.

Analyses and Results – Continued

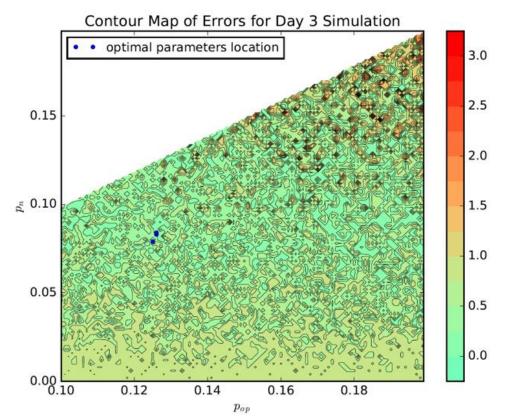
- Using contour maps, the areas of errors (difference between simulated results and real network results) was plotted from low to high.
- Lower values are light greens, and higher values are dark reds.



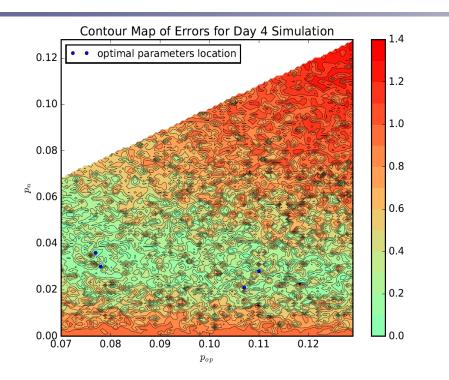
Contour map illustrating the sensitivity of information diffusion model on the **Day 1** of Bernardo wildfire data.

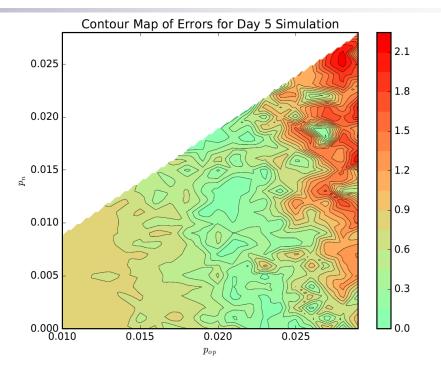


Contour map illustrating the sensitivity of information diffusion model on the **Day 2** of Bernardo wildfire data.



Contour map illustrating the sensitivity of information diffusion model on the **Day 3** of Bernardo wildfire data.





Contour map illustrating the sensitivity of information diffusion model on the **Day 4** of Bernardo wildfire data

Contour map illustrating the sensitivity of information diffusion model on the **Day 5** of Bernardo wildfire data

Simulation tools **could** mimic the information diffusion in real events.

- Range of optimal parameters (propagation probabilities)
- Parameters of propagation probabilities usually decrease along with time unless a new update emerged in the topic.

Concluding Remarks

Efficient Information Diffusion is determined by:

Network structure

A shorter average path length or a lower average clustering coefficient tended to have a wider information diffusion

Influential early adopters

Degree discount performs the best over all types of ntwk Greedy only performs well in Lattice network Well-connected networks need fewer early adopters

Propagation probability

Higher propagation probability leads to more efficient information diffusion, needing fewer early adopters

Future Network

- Improve existing tools to be suitable for large scale networks
- Develop additional social network tools
- Improve influence maximization algorithms for better understanding and more effectively predicting the spread in the social network with spatial and temporal content.
- Spatial clustering and Social clustering