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Population Level Health
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The reality of Complex Spatial Health Data

* Big data processing
challenges w/ added
dimensions

* Cross disciplinary
communication

* HIPAA and security

* Who sees/gets the
data?

* Modeling challenges

» Data organization/
Infrastructure
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How Can CyberGIS help?

* CyberGlIS as defined by ESRI: “GIS detached from the
desktop and deployed on the web, with the associated
issues of hardware software, data storage, digital
networks, people, training and education.”

* Goldberg et al. Spatial-Health CyberGIS Marketplace

— confidentiality and privacy protections

— real-time analytic methods

— data standardization

— comprehensive end-to-end ecosystem architecture
* |n addition:

— need for shareable workflows to promote inter-field
collaboration

— diverse data type integration
— replicability of analytic processes.



Step 1: Hosted HIPAA compliant Geodatabase

Sherlock Cloud
/ HTTP Server \ / Windows Desktop \
RESTful (URL-based) interface to database ArcGIS and Statistics Software
queries and data processing routines. , |

ArcGIS Toolbox with forms to access routines
through HTTP Server

\ // \\Direct connection to Database for map display.//
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Data Processing Server

Data processing queue with support for analysis and data query “plugins” from TREC
contributors.

Library of pre-programed routines for data extract / transform / load, as well as spatial
analysis methods and database queries.
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Database Server

PostgreSQL database with PostGIS spatial extensions.

Handles large data queries and spatial analysis that cannot be handled efficiently within, e.g. ArcGIS.




Demographic
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. . Age(SD . .| %Employed (full- Valid(Acc,GPS, | Home Location
Study Description/Population F, M, (%F) ) %Hispanic time) Mean BMI Both) YN
45

Overweight and obese adults 21-60 55, 16, 26, 45,
71 42(10 40, 31, (56.3% 33(3 448, 576, 389 67,4
W years old (77.4%) (19) (37 0%) (56.3%) )
N=40 women who did not meet the 37 0
DIAL strict eligibility criteria of the MENU 37 (1(')0;/) 57(15) 3, 34, (8.1%) 20, 17, (54.1%) 33(4) 276, 325,270 37,0
0

or RfH studies

351 residents over the age of 65
living in Continuing Care Retirement 247,100,
IPARC Communities (CCRC) in SD County 347 (71%) 84(6) 5,332, (1.4%)0, 347, (0.0%) NA 7924, 9207, 7073 334,13
n=307 participants, n=44 peer
leaders

6-month randomized controlled trial

of metformin, lifestyle intervention, 126,0, 17,108,

R or both, among a sample.of 340 126 (100%) 61(7) (13.6%) 44, 82, (34.9%) 31(6) 946, 1117, 852 126,0
postmenopausal, overweight/obese
breast cancer survivors.
Post I | weight 40, 0,
RfH Memory [ 40 63(7) 5,35, (11.1%)10, 30, (23.3%)  22(2) 294,325,254 39,1
cancer survivors (100%)
SDSU students, faculty, and staff wh
SDSU Cycling students, faculty, an@ staltwho 33 8 25, (24%) NA 1,32, (3%) 27, 6, (81.8%) NA 105, 201, 105 32,1
were cyclists
N=40, healthy, working adults or
Sensecam 12, 28,
students from the UCSD Commuter 40 (30%) 36(12) 0, 40, (0%) 31,9, (77.5%) 23(3) 103, 154, 101 40,0
Cycling Network >
. . 20, 22,
Latino population 42 (47.6%) 27(11) 42,0, (100%) 3, 39, (7.1%) 26(6) 260, 204, 169 41,1
. 0
N = 40 participants from the Stein
SAGE study, selected to vary in 16,24,

physical functioning based on the SF- 40 (40%) 78(10) 3, 37, (7.5%) 4, 36, (11.1%) 25(3) 231, 282,228 40,0
36 measure, with 10 participants 0
from each of four decades 60-100.

Adults living in a geographically
diverse set of neighborhoods 700 50%
throughout San Diego County




Change in Lifespace Over Time
Within Retirement Communities:
A Walking Intervention

Kristin Meseck, Marta Jankowska, Suneeta Godbole,
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Methods: Lifespaces
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Results

Differences in walking locations
between baseline and 3 months
by gender and intervention status

p=.038
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Data and Analytical
Considerations

,

4[ Validity and reliability

* Representation of behaviors
s Representation of spatial context

4[ Compliance and technology

4

* GPS accuracy and treatment of
missing data
* Participant compliance consistency

4[ Spatial and temporal data

,

¢ Specific considerations for spatial
and temporal data (high
dimensional)

* GIS data considerations

,

4[ Other data types

* Travel diaries

s Omics

* Life trajectories
* Sensors

Step 2: SPACES

ST

MLA: Improved

behavior

Data Integration
and Output: SPACES

Accelerometer

classification from and sedentary behavior

accelerometer data

Health

Cancer
outcomes,
biomarkers,
BMlI, other
Sensors,
other
measures

DELPHI: Health
data
integration
platform

measurement

SPACES

Integration platform for
complex data using
workflow infrastructure
for secure, scalable,
replicable analytics

GIS

Layers of environmental
variables

T

Obijective physical activity

PALMS: Joining
Accelerometerand
GPS

GPS

Objective
location and
time
measure-
ment

GDB: Joining GPS
and GIS

Analytic Workflow
Examples: Kepler

,

4[ Demographic parameters

» Testing PA cut points for older adults
» Comparing MLA to PALMS outputs for
specific ethnic groups

4[ Exposure assessment

,

* |dentifyinglocations of interest

* Activity space analysis

» Creating kernel density weighted
exposure measures

4[ Behavioral assessment

,

» Activity bouts
» Machine learning behavior classification

* Behaviors in specific
locationsfenvironments

4[ Time-based analysis

,

* [ntervention outcomes
* Environmental change
* Lifecourse analysis




Browser-side Operations
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CW
PHS
CENTER FOR WIRELESS &
POPULATION HEALTH SYSTEMS

Validating machine-learned classifiers of sedentary
behavior & physical activity

Purpose:

1.

Validate machine-learned
algorithms to classify patterns
of accelerometer data to better
discriminate types of sedentary
behaviors and physical activity.
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Sensor Data Activities
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To develop machine learned
algorithms to classify behaviors
using images collected by the
SenseCam (Computer Vision).

%' = Biking

Jacqueline Kerr, Kevin Patrick, Jim Sallis, Simon Marshall, Loki Natarajan, Serge Belongie, Gert
Lanckriet, Mohammad Moghimi, Katherine Ellis

Funded by NIH/NCI Grant 1 RO1 CA164993-01




Hotspot detection algorithm (1)
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PALMS Calculation Workflow — GPS / Accelerometer / Heart Rate
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SPACES goals

Increase provenance in not only workflows and
processing procedures, but also data formats and
structures

Provide a secure computing environment for
sensitive data and studies

Make CyberGIS and complex computer
infrastructures more accessible to public health and
behavioral researchers (not have to worry about
‘big’ data)

Allow for collaboration between diverse disciplines
to advance discovery and knowledge creation






